+7(499)-938-42-58 Москва
+7(800)-333-37-98 Горячая линия

Вольфрам: история открытия, основные особенности и область применения. Вольфрам металл

Вольфрам

Вольфрам: история открытия, основные особенности и область применения. Вольфрам металл

 
Вольфрам — самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент — углерод. При стандартных условиях химически стоек.

Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием лат. Spuma lupi («волчья пена») или нем. Wolf Rahm («волчьи сливки», «волчий крем»).

Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»).

СТРУКТУРА

Кристалл вольфрама имеет объемноцентрированную кубическую решетку.

Кристаллы вольфрама на холоду отличаются малой пластичностью, поэтому в процессе прессования порошка они практически почти не изменяют своей основной формы и размеров и уплотнение порошка происходит главным образом путем относительного перемещения частиц.

В объемно-центрированной кубической ячейке вольфрама атомы располагаются по вершинам и в центре ячейки, т.е. на одну ячейку приходится два атома. ОЦК-структура не является плотнейшей упаковкой атомов. Коэффициент компактности равен 0,68. Пространственная группа вольфрама Im3m.

СВОЙСТВА

Вольфрам — блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя — время существования сиборгия очень мало). Температура плавления — 3695 K (3422 °C), кипит при 5828 K (5555 °C).

Плотность чистого вольфрама составляет 19,25 г/см³. Обладает парамагнитными свойствами (магнитная восприимчивость 0,32·10−9). Твердость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C — 55·10−9 Ом·м, при 2700 °C — 904·10−9 Ом·м. Скорость звука в отожжённом вольфраме 4290 м/с. Является парамагнетиком.

Вольфрам является одним из наиболее тяжелых, твердых и самых тугоплавких металлов. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддается ковке и может быть вытянут в тонкую нить.

Запасы и добыча

Кларк вольфрама земной коры составляет (по Виноградову) 1,3 г/т (0,00013 % по содержанию в земной коре). Его среднее содержание в горных породах, г/т: ультраосновных — 0,1, основных — 0,7, средних — 1,2, кислых — 1,9.

Процесс получения вольфрама проходит через подстадию выделения триоксида WO3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре около 700 °C.

Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200—1300 °C, затем пропускают через него электрический ток.

Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

ПРОИСХОЖДЕНИЕ

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов.

Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO4 * mMnWO4 — соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO4).

Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1—2 %.

Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России, Узбекистане и Южной Корее.

Мировое производство вольфрама составляет 49—50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия.

Главные импортёры: США, Япония, Германия, Великобритания.
Также есть месторождения вольфрама в Армении и других странах.

ПРИМЕНЕНИЕ

Тугоплавкость и пластичность вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках.

Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).

Вольфрам используют в качестве электродов для аргоно-дуговой сварки. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию.

Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам — важный компонент лучших марок инструментальных сталей.

Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.

Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам. ( Р18, Р6М5. от rapid — быстрый, скорость).

Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка. Некоторые соединения вольфрама применяются как катализаторы и пигменты. Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.

Дителлурид вольфрама WTe2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К). Искусственный радионуклид 185W используется в качестве радиоактивной метки при исследованиях вещества.

Стабильный 184W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Вольфрам (англ. Tungsten) — W

Кристаллографические свойства

Источник: http://mineralpro.ru/minerals/tungsten/

Вольфрам: применение, свойства и химические характеристики

Вольфрам: история открытия, основные особенности и область применения. Вольфрам металл

Природа-мать обогатила человечество полезными химическими элементами. Некоторые из них скрыты в ее недрах и содержатся в относительно малом количестве, но их значение очень существенно. Одним из таких является вольфрам. Применение его обусловлено особыми свойствами.

История происхождения

XVIII век – век открытия таблицы Менделеева – стал основополагающим и в истории этого металла.

Ранее принималось существование некоего вещества, входящего в состав минеральных пород, которое мешало выплавке из них нужных металлов. К примеру, получение олова было затруднено, если в руде содержался такой элемент. Разность температур плавления и химические реакции приводили к образованию шлаковой пены, что уменьшало количество оловянного выхода.

В VIII веке металл был последовательно открыт шведским ученым Шееле и испанцами братьями Элюар. Произошло это вследствие химических экспериментов по окислению минеральных пород – шеелита и вольфрамита.

Зарегистрирован в периодической системе элементов в соответствии с атомным номером 74. Редкий тугоплавкий металл с атомной массой 183,84 – это вольфрам. Применение его обусловлено необычными свойствами, открытыми уже в течение XX века.

Где искать?

По количеству в недрах земли он является «малонаселяющим» и занимает 28-е место.

Является компонентом около 22 различных минералов, однако существенное значение для его добычи имеют только 4 из них: шеелит (содержит около 80 % триоксида), вольфрамит, ферберит и гюбнерит (имеют в составе по 75-77 % каждый).

В составе руд чаще всего содержатся примеси, в некоторых случаях производится параллельное «извлечение» таких металлов, как молибден, олово, тантал и проч. Наибольшие залежи находятся в Китае, Казахстане, Канаде, США, также есть в России, Португалии, Узбекистане.

В связи с особыми свойствами, а также малым содержанием в породах, технология получения чистого вольфрама достаточно сложная.

  1. Магнитная сепарация, электростатическая сепарация или флотация с целью обогащения руды до 50-60 % концентрации вольфрамового оксида.
  2. Выделение 99 % окиси путем химических реакций со щелочными или кислотными реагентами и поэтапного очищения получаемого осадка.
  3. Восстановление металла с помощью углерода или водорода, выход соответствующего металлического порошка.
  4. Изготовление слитков или порошковых спеченных брикетов.

Одним из важных этапов получения металлургической продукции является порошковая металлургия. Она основана на смешивании порошкообразных тугоплавких металлов, их прессовании и последующем спекании.

Таким образом получают большое количество технологически важных сплавов, в том числе карбид вольфрама, применение которому найдено в основном в промышленном производстве режущих инструментов повышенной мощности и стойкости.

Физические и химические свойства

Вольфрам – тугоплавкий и тяжелый металл серебристого цвета с объёмно-центрированной кристаллической решеткой.

  • Температура плавления – 3422 ˚С.
  • Температура кипения – 5555 ˚С.
  • Плотность – 19,25 г/см3.

Является хорошим проводником электрического тока. Не магнитится. Некоторые минералы (например, шеелит) люминесцентные.

Стоек к влиянию кислот, агрессивных веществ в среде высоких температур, коррозии и старению. Деактивации влияния отрицательных примесей в сталях, улучшению ее жаропрочности, коррозионной стойкости и надежности также способствует вольфрам. Применение таких железоуглеродистых сплавов оправдано их технологичностью и износостойкостью.

Механические и технологические свойства

Вольфрам – твердый, прочный металл. Его твердость составляет 488 НВ, предел прочности – 1130-1375 МПа. В холодном состоянии не пластичен. При температуре 1600 ˚С повышается пластичность до состояния абсолютной податливости к обработке давлением: ковке, прокатке, волочению. Известно, что 1 кг этого металла позволяет изготавливать нить общей длиной до 3 км.

Обработка резанием затруднена в силу чрезмерной твердости и хрупкости. Для сверления, точения, фрезерования используются твердосплавные вольфрамокобальтовые материалы, изготовленные методом порошковой металлургии.

Реже, при низких скоростях и особых условиях, применяются инструменты из быстрорежущей легированной вольфрамсодержащей стали.

Стандартные принципы резки неприменимы, так как оборудование чрезвычайно быстро изнашивается, а обрабатываемый вольфрам растрескивается. Применяются следующие технологии:

  1. Химическая обработка и пропитка поверхностного слоя, в том числе использование с этой целью серебра.
  2. Нагрев поверхности с помощью печей, газового пламени, электрического тока силой 0,2 А. Допустимая температура, при которой происходит некоторое повышение пластичности и, соответственно, улучшается резка, – 300-450 ˚С.
  3. Резание вольфрама с применением легкоплавких веществ.

Заточку и шлифование целесообразно проводить с помощью алмазных и эльборовых инструментов, реже – корундовых.

Сварка данного тугоплавкого металла производится в основном под действием электрической дуги, вольфрамовых или угольных электродов в среде инертных газов или жидких защит. Также возможно применение контактной сварки.

Этот особенный химический элемент обладает характеристиками, которые отличают его в общей массе. Так, к примеру, характеризуясь высокой теплостойкостью и износостойкостью, он повышает качество и режущие свойства легированных вольфрамсодержащих сталей, а высокая температура плавления позволяет изготавливать нити накала для лампочек и электроды для сварки.

Применение

Редкость, необычность и важность обуславливают широкое использование в современной технике металла под названием Tungsten – вольфрам. Свойства и применение оправдывают высокую стоимость и востребованность.

Высокие показатели температуры плавления, твердости, прочности, жаростойкости и стойкости к химическим воздействиям и коррозии, износостойкости и резальных особенностей – вот основные его козыри.

Варианты использования:

  1. Нити накаливания.
  2. Легирование сталей с целью получения быстрорежущих, износостойких, жаростойких и жаропрочных железоуглеродистых сплавов, находящих применение для производства сверл и других инструментов, пуансонов, пружин и рессор, рельс.
  3. Изготовление «порошковых» твердых сплавов, применяемых в основном в качестве особо износостойких режущих, буровых или прессовочных инструментов.
  4. Электроды для аргонодуговой и контактной сварки.
  5. Изготовление деталей для рентгеновской и радиотехники, различных технических ламп.
  6. Специальные светящиеся краски.
  7. Проволока и детали для химической промышленности.
  8. Различная практичная мелочевка, к примеру, мормышки для рыбалки.

Приобретают популярность различные сплавы, в состав которых входит вольфрам. Область применения таких материалов порой удивляет – начиная от тяжелого машиностроения и заканчивая легкой промышленностью, где изготавливаются ткани с особыми свойствами (например, огнестойкие).

Универсальных материалов не существует. Каждый известный элемент и созданные сплавы отличаются своей уникальностью и необходимостью для определенных сфер жизни и промышленности.

Однако некоторые из них обладают особыми свойствами, делающими ранее неосуществимые процессы возможными. Одним из таких металлов является вольфрам.

Применение его недостаточно широко, как у стали, но каждый из вариантов предельно полезен и необходим человечеству.

Источник: https://FB.ru/article/279814/volfram-primenenie-svoystva-i-himicheskie-harakteristiki

Вольфрам – свойства и область применения | Отходы и металлолом в России xLOM

Вольфрам: история открытия, основные особенности и область применения. Вольфрам металл

Из всех известных сегодня металлов вольфрам самый тугоплавкий. Он занимает 74-ю позицию периодической системы, имеет ряд схожих свойств с молибденом и хромом, находящимися с ним в одной группе. На вид вольфрам представляет твердое вещество серого цвета, с характерным серебристым блеском.

Основные характеристики вольфрама

Для практического применения наиболее важны высокие показатели следующих характеристик:

  • электрическое сопротивление;
  • коэффициент линейного расширения;

Чистый вольфрам обладает высокой пластичностью, не растворяется в специальном кислотном растворе без предварительного нагрева хотя бы до 5000С.

Он легко вступает в реакцию с углеродом, следствием которой является образование карбида вольфрама известного высокой прочностью. Также металл известен своими оксидами, наиболее распространенный из них вольфрамовый ангидрид.

Его главное преимущество над остальными, возможность восстановления порошка к состоянию компактного металла, с побочным образованием низших оксидов.

Режущие пластины фирмы Sandvik Coromant с применением карбида вольфрама

Среди основных характеристик, делающих применение вольфрама затруднительным называют следующие:

  • ломкость и склонность к окислению при низких температурах.

Кроме того, высокая температура кипения, а также точка испарения затрудняют добычу компактного материала.

Сплавы, содержащие вольфрам

Сегодня различают однофазные сплавы вольфрама. Это подразумевает внедрение одного или нескольких элементов. Наиболее известны соединения вольфрама с молибденом. Легирование этим элементом повышает прочность вольфрама при его растяжении. Также к однофазным сплавам относятся системы: вольфрам-титан/цирконий, ниобий, гафний.

Однако большей пластичности придает вольфраму рений, сохраняя остальные показатели на характерном ему высоком уровне. Но практическое применение таких соединений ограничено трудностями при добыче Re.

Поскольку вольфрам наиболее тугоплавкий материал, получить его сплавы трудно традиционным способом. При температуре плавления вольфрама другие металлы уже кипят или даже переходят в газообразную фазу.

Современные технологии позволяют получать ряд сплавов с помощью электролиза.

Например, вольфрам — никель — кобальт, который используется не для изготовления целых деталей, а с целью нанесения защитного слоя на менее прочные металлы.

Также в промышленности все еще остается актуальным способ получения вольфрамовых сплавов, используя методы порошковой металлургии. При этом требуется создание особых условий технологического процесса, который включает в себя наличие вакуума.

Особенности взаимодействия металлов с вольфрамом делают предпочтительными соединения не парного характера, а с использованием 3, 4-х и более компонентов.

Такие сплавы отличаются особенной твердостью, однако малейшее отклонение от процентного содержания того или иного элемента приводит к повышению хрупкости готового сплава.

Вольфрам, как многие другие элементы редкой группы, не встречается в природе. Поэтому добыча металла не сопровождается строительством крупных промышленных комплексов. Сам процесс получения материала условно делят на такие этапы:
  1. Добыча руды, содержащей редкий металл.
  2. Создание условий для возможного выделения вольфрама от перерабатываемой массы.
  3. Концентрирование материала в виде раствора или осадка.
  4. Очищение полученного химического соединения.
  5. Получение чистого вещества.

Вольфрамовая руда

Более сложным оказывается процесс изготовления компактного металла, к примеру, вольфрамовой проволоки. Основная трудность заключается в том, что нельзя допустить даже малейшего попадания примесей, резко ухудшающих плавкие и прочностные свойства.

Область применения вольфрама

С помощью этого металла изготавливают нити накаливания, рентгеновские трубки, нагреватели, экраны вакуумных печей, предназначающихся для использования в высокотемпературном режиме.

Рентгеновская трубка с нитью из вольфрама

Сталь, легированная вольфрамом имеет высокие прочностные качества.

Продукция из таких видов сплава используется для изготовления инструментов широкого предназначения: медицина, бурение скважин, изделия для обработки материалов в машиностроении (режущие пластины, как на фото выше).

Преимуществом соединения считается устойчивость к истиранию, маловероятность появления трещин в процессе эксплуатации. Наиболее известная в строительстве марка стали с использованием вольфрама называется «победит».

Лом вольфрама

Химическая промышленность также нашла применение вольфраму. Из него делают краски, катализаторы, пигменты.

Атомная промышленность использует тигли из этого металла, а также специальные контейнера для хранения радиоактивных отходов.

О нанесении покрытий из вольфрама уже вкратце упоминалось. Оно применяется для нанесения на материалы, работающие при высоких температурах в восстановительных и нейтральных средах, как защитная пленка.

Также известны прутки, используемые при дуговой сварке. Поскольку вольфрам неизменно остается тугоплавким металлом при выполнении сварочных работ он используется с присадочными проволоками.

Источник: https://xlom.ru/vidy-metalloloma/volfram-svojstva-i-oblast-primeneniya

Нахождение в природе

Кларк вольфрама земной коры составляет (по Виноградову) 1,3 г/т (0,00013 % по содержанию в земной коре). Его среднее содержание в горных породах, г/т: ультраосновных — 0,1, основных — 0,7, средних — 1,2, кислых — 1,9.

Основная статья: Вольфрамовые руды

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трёхокисью вольфрама WO3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов.

Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO4 · mMnWO4 — соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO4).

Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1—2 %.

Месторождения

Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России, Узбекистане и Южной Корее.

Мировое производство вольфрама составляет 49—50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия.

Главные импортёры: США, Япония, Германия, Великобритания.
Также есть месторождения вольфрама в Армении и других странах.

Получение

Процесс получения вольфрама проходит через подстадию выделения триоксида WO3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре ок. 700 °C.

Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200—1300 °C, затем пропускают через него электрический ток.

Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

Химические свойства

Проявляет валентность от 2 до 6. Наиболее устойчив 6-валентный вольфрам. 3- и 2-валентные соединения вольфрама неустойчивы и практического значения не имеют.

Вольфрам имеет высокую коррозионную стойкость: при комнатной температуре не изменяется на воздухе; при температуре красного каления медленно окисляется в оксид вольфрама (VI).

Вольфрам в ряду напряжений стоит сразу после водорода, и в соляной, разбавленной серной и плавиковой кислотах почти нерастворим. В азотной кислоте и царской водке окисляется с поверхности.

Растворяется в перекиси водорода.

Легко растворяется в смеси азотной и плавиковой кислот:

 2W + 4HNO3 + 10HF ⟶ WF6 + WOF4 + 4NO ↑ + 7H2O

Реагирует с расплавленными щелочами в присутствии окислителей:

 2W + 4NaOH + 3O2 ⟶ 2Na2WO4 + 2H2O W + 2NaOH + 3NaNO3 ⟶ Na2WO4 + 3NaNO2 + H2O

Поначалу данные реакции идут медленно, однако при достижении 400 °C (500 °C для реакции с участием кислорода) вольфрам начинает саморазогреваться, и реакция протекает достаточно бурно, с образованием большого количества тепла.

Растворяется в смеси азотной и плавиковой кислоты, образуя гексафторвольфрамовую кислоту H2[WF6].

Из соединений вольфрама наибольшее значение имеют: триоксид вольфрама или вольфрамовый ангидрид, вольфраматы, перекисные соединения с общей формулой Me2WOX, а также соединения с галогенами, серой и углеродом.

Вольфраматы склонны к образованию полимерных анионов, в том числе гетерополисоединений с включением других переходных металлов.

Металлический вольфрам

  • Тугоплавкость и пластичность вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках.
  • Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).
  • Вольфрам используют в качестве электродов для аргонно-дуговой сварки.
  • Сплавы вольфрама, ввиду его высокой температуры плавления, получают методом порошковой металлургии. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам — важный компонент лучших марок инструментальных сталей.
  • Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.
  • Высокая плотность вольфрама делает его удобным для защиты от ионизирующего излучения. Несмотря на бо́льшую плотность по сравнению с традиционным и более дешёвым свинцом, защита из вольфрама оказывается менее тяжёлой при равных защитных свойствах или более эффективной при равном весе. Из-за тугоплавкости и твёрдости вольфрама, затрудняющих его обработку, в таких случаях используются более пластичные сплавы вольфрама с добавлением никеля, железа, меди и др. либо взвесь порошкообразного вольфрама (или его соединений) в полимерной основе.

Соединения вольфрама

  • Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам.
  • Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка.
  • Некоторые соединения вольфрама применяются как катализаторы и пигменты.
  • Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.
  • Дителлурид вольфрама WTe2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К).

Искусственный радионуклид 185W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный 184W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Рынок вольфрама

Цены на металлический вольфрам (содержание элемента порядка 99 %) на конец 2010 года составляли около 40—42 долларов США за килограмм, в мае 2011 года составляли около 53—55 долларов США за килограмм. Полуфабрикаты от 58 USD (прутки) до 168 (тонкая полоса). В 2014 году цены на вольфрам колебались в диапазоне от 55 до 57 USD.

Биологическая роль

Вольфрам не играет значительной биологической роли. У некоторых архебактерий и бактерий имеются ферменты, включающие вольфрам в своем активном центре.

Существуют облигатно-зависимые от вольфрама формы архебактерий-гипертермофилов, обитающие вокруг глубоководных гидротермальных источников.

Присутствие вольфрама в составе ферментов может рассматриваться как физиологический реликт раннего архея — существуют предположения, что вольфрам играл роль в ранних этапах возникновения жизни.

Пыль вольфрама, как и большинство других видов металлической пыли, раздражает органы дыхания.

Изотопы

Основная статья: Изотопы вольфрама

Известны изотопы вольфрама с массовыми числами от 158 до 192 (количество протонов 74, нейтронов от 84 до 118), и более 10 ядерных изомеров.

Природный вольфрам состоит из смеси пяти изотопов (180W — 0,12(1)%, 182W — 26,50(16) %, 183W — 14,31(4) %, 184W — 30,64(2) % и 186W — 28,43(19) %). В 2003 открыта чрезвычайно слабая радиоактивность природного вольфрама (примерно два распада на грамм элемента в год), обусловленная α-активностью 180W, имеющего период полураспада 1,8⋅1018 лет.

Источник: https://chem.ru/volfram.html

История возникновения вольфрама

Вольфрам: история открытия, основные особенности и область применения. Вольфрам металл

1.История возникновения Вольфрама ……………………………………….3

2.Вольфрам как химический элемент, определение ………………………..5

3.Физические и химические свойства ……………………………………….6

4.Область применения Вольфрама …………………………………………..8

5. Нахождение в природе и получение Вольфрама………………………..11

Заключение………………………………………………………………….12

1. История возникновения вольфрама

Еще в давние времена металлурги не раз сталкивались со странным явлением: время от времени по совершенно непонятным причинам выплавка олова из руды резко падала. Поскольку технико-экономические показатели плавки не могли не волновать и наших предков, они стали внимательно присматриваться к оловянной руде, идущей в плавку.

Вскоре им удалось подметить такую закономерность: неприятности возникали тогда, когда в руде встречались тяжелые камни бурого или желтовато-серого цвета. Вывод напрашивался сам собой: камень «пожирает олово, как волк овцу». А коли так, то пусть и называется этот злой камень «вольфрамом».

В некоторых же странах минерал получил другое название «тунгстен», что означает «тяжелый камень».         Вольфрам был открыт знаменитым шведским химиком Карлом Шееле. Аптекарь по профессии, Шееле в своей маленькой лаборатории провел много замечательных исследований. Он открыл кислород, хлор, барий, марганец.

Незадолго до смерти, в 1781 году, Шееле — к этому времени уже член Стокгольмской Академии наук — обнаружил, что минерал тунгстен (впоследствии названный шеелитом) представляет собой соль неизвестной тогда кислоты.

Спустя два года испанские химики братья д'Элуяр, работавшие под руководством Шееле, сумели выделить из этого минерала новый элемент — вольфрам, которому суждено было произвести переворот в промышленности. Однако это произошло через целое столетие.   В 1864 году англичанин Роберт Мюшет впервые ввел вольфрам (примерно 5%) как легирующую добавку в сталь.

Сталь, вошедшая в историю металлургии под названием «само-кал Мюшета», могла выдерживать красное каление, не только сохраняя, но и увеличивая свою твердость, т. е. обладала свойством «самозакалки». Резцы, изготовленные из этой стали, позволили в полтора раза повысить скорость резания металла (7,5 метров в минуту вместо 5).         

Спустя примерно 40 лет появилась быстрорежущая сталь, содержащая уже до 8% вольфрама. Теперь скорость резания металла достигла 18 метров в минуту. Прошло еще несколько лет, и скорость обработки металла возросла до 35 метров в минуту. Так примерно за полвека вольфрам сумел повысить производительность металлорежущих станков в 7 раз.   

2.Вольфрам как химический элемент, определение.

Вольфра́м — химический элемент с атомным номером 74 впериодической системе, обозначается символом W (лат. Wolframium), твёрдый серый переходный металл.     Вольфрам — самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент —углерод. При стандартных условиях химически стоек.

     Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием «волчья пена» — «Spuma lupi» на латыни, или «Wolf Rahm» по-немецки. Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»).

    В настоящее время в США, Великобритании и Франции для вольфрама используют название «tungsten» (швед. tung sten — «тяжелый камень»). В 1781 знаменитый шведский химик Шееле, обрабатывая азотной кислотой минерал шеелит, получил жёлтый «тяжёлый камень» (триоксид вольфрама)[источник не указан 16 дней].

В 1783 испанские химики братья Элюар сообщили о получении из саксонского минерала вольфрамита как растворимой в аммиаке жёлтой окиси нового металла, так и самого металла[источник не указан 16 дней]. При этом один из братьев, Фаусто, был в Швеции в 1781 и общался с Шееле.

Шееле не претендовал на открытие вольфрама, а братья Элюар не настаивали на своём приоритете.                                                                 

3.Физические свойства

Вольфрам — светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя — время существования сиборгия очень мало).   Некоторые физические свойства приведены в таблице (см. выше). Другие физические свойства вольфрама:

  • твердость по Бринеллю 488 кг/мм².
  • удельное электрическое сопротивление при 20 °C 55·10−9 Ом·м, при 2700 °C — 904·10−9 Ом·м.
  • скорость звука в отожжённом вольфраме 4290 м/с.
  • магнитная восприимчивость 0,32·10−9 (парамагнетик).

Вольфрам является одним из наиболее тяжелых, твердых и самым тугоплавким металлом. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддается ковке и может быть вытянут в тонкую нить.

Химические свойства

Проявляет валентность от 2 до 6. Наиболее устойчив 6-валентный вольфрам. 3- и 2-валентные соединения вольфрама неустойчивы и практического значения не имеют.

       Вольфрам имеет высокую коррозионную стойкость: при комнатной температуре не изменяется на воздухе; при температуре красного каления медленно окисляется в оксид вольфрама (VI).

Вольфрам в ряду напряжений стоит сразу после водорода, и в соляной, разбавленной серной и плавиковой кислотах почти не растворим. В азотной кислоте и царской водке окисляется с поверхности.           

Легко растворяется в смеси азотной и плавиковой кислот[2]:

Реагирует с расплавленными щелочами в присутствии окислителей[3]:

Поначалу, данные реакции идут медленно, однако при достижении 400 °C (500 °C для реакции с участием кислорода) вольфрам начинает саморазогреваться и реакция протекает достаточно бурно, с образованием большого количества тепла.

В смеси азотной и плавиковой кислоты растворяется, образуя гексафторвольфрамовую кислоту H2[WF6].

Из соединений вольфрама наибольшее значение имеют: триоксид вольфрама или вольфрамовый ангидрид, вольфраматы, перекисные соединения с общей формулой Me2WOX, а также соединения с галогенами, серой и углеродом.

Вольфраматы склонны к образованию полимерных анионов, в том числе гетерополисоединений с включением других переходных металлов.

4.Применение

Главное применение вольфрама — как основа тугоплавких материалов в металлургии.

Соединения вольфрама

  • Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение,фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используютсятвёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам.
  • Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка.
  • Некоторые соединения вольфрама применяются как катализаторы и пигменты.
  • Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторырентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.
  • Дителлурид вольфрама WTe2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К).

Другие сферы применения

Искусственный радионуклид 185W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный184W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов(около 2 барн).

5.Нахождение в природе

Кларк вольфрама земной коры составляет (по Виноградову) 1,3 г/т(0.0013 % по содержанию в земной коре). Его среднее содержание в горных породах, г/т: ультраосновных — 0,1, основных — 0,7, средних — 1,2, кислых — 1,9.

          Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов.

Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO4 * mMnWO4 — соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO4). Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1-2 %. Месторождения.

Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии,Португалии, России и Южной Корее. Мировое производство вольфрама составляет 49-50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5.

Основные экспортёры вольфрама: Китай, Южная Корея, Австрия. Главные импортёры: США, Япония, Германия, Великобритания. Также есть месторождения вольфрама в Армении и других странах.

Заключение.

  В данной статье рассмотрены различные аспекты, связанные с тугоплавким металлом ВОЛЬФРАМ – свойства, области применения, производство, продукция.          Как описано в статье, процесс получения данного металла состоит из многих стадий и является достаточно трудоемким.

Авторы постарались выделить наиболее значимые этапы производства вольфрама и обратить внимание на важные особенности.         Обзор свойств и областей применения вольфрама показывает, что это очень важный материал, без которого в некоторых отраслях промышленности просто невозможно обойтись.

Он обладает уникальными свойствами, которые в некоторых ситуациях нельзя получить путем применения других материалов.

         Обзор выпускаемой промышленностью продукции из вольфрама – проволоки, прутков, листов, порошка – позволяет лучше понять ее особенности, важные свойства и конкретные применения. 

Источник: https://www.stud24.ru/metallography/istoriya-vozniknoveniya-volframa/485118-1886598-page1.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.