+7(499)-938-42-58 Москва
+7(800)-333-37-98 Горячая линия

Понятия риск и надежность связанные с техникой. Надёжность технических систем и техногенный риск

Надежность технических систем и техногенный риск

Понятия риск и надежность связанные с техникой. Надёжность технических систем и техногенный риск

Определение 1

Техническая система – это упорядоченная совокупность отдельных частей, которые взаимодействуют с друг другом для достижения определенных целей и показателей.

Определение 2

Надежность технической системы – это способность системы и её элементов поддерживать в течении некоторого определенного времени значение всех параметров, которые необходимы для выполнения процессов, в установленных предприятием режимах.

Надежность каждой системы (объекта) характеризуется некоторыми критериями, а именно:

  • Безотказность – способность системы выполнять поставленные цели в течении определенного промежутка времени. К параметрам безотказности можно отнести такие, как – наработка до отказа, наработка между отказами, заданная наработка до отказа, интенсивность отказа;
  • Пригодность для ремонта (ремонтнопригодность) – способность системы и её элементов предупреждать и обнаруживать отказы и повреждения и приспосабливаться к ним;
  • Срок службы (долговечность) – способность системы выполнять поставленные цели до наступления предельного состояния, которое может быть исправлено своевременным ремонтом. К параметрам долговечности можно отнести: средний срок службы, срок службы до первого капитального ремонта, длительность периода между капитальными ремонтами, суммарный срок службы;
  • Сохраняемость – способность системы сохранять работоспособность во время и после транспортировки, а также до и после хранения. Параметры: срок сохраняемости, назначенный срок сохраняемости.
  • Курсовая работа 420 руб.
  • Реферат 230 руб.
  • Контрольная работа 190 руб.

Параметры надежности технических систем

В зависимости условий использования системы, могут изменяться её параметры надежности. Надежность системы и её элементов косвенно или напрямую зависит от внешних и внутренних условий ее эксплуатации.

  1. Внутренние условия – это условия, которые непосредственно связаны с производственными процессами, к таковым относятся:

    • тип используемых материалов и сырья (топливо, смазочные материалы и т.п. меняют свойства системы в течении определенного времени).
    • место, где непосредственно работает система
    • вид используемой энергии. В зависимости от вида энергии происходит деформация, износ, коррозия, поломка системы в целом и её отдельных элементов.
  2. Внешние условия – условия, которые никак не связаны и не зависят от производственных процессов предприятия. Например:

    • повреждения при транспортировке
    • работа соседних предприятий
    • механические повреждения, вызванные непроизводственными процессами (обрушение конструкции)

Также в внешним воздействиям можно отнести погодные условия, такие как ветер, наводнения, землетрясения и т.п. Именно поэтому во время эксплуатации предприятия и его систем следует проводить профилактические меры, которые сведут процент влияния погодных процессов к минимуму, тем самым уменьшая вероятность техногенной катастрофы.

Что такое техногенный риск?

Определение 3

Техногенный риск характеризует возможность возникновения опасности или катастрофы в техносфере, при протекании технологических процессов и использовании различного вида оборудования.

Определение 4

Техносфера – это объединение частей биосферы, где среда обитания полностью или частично изменена человеком, в соответствии со своими потребностям.

Различают следующие виды техногенных рисков:

  1. Внутренние техногенные риски:

    • внутренние аварии и разрушения;
    • внутренние пожары и взрывы.
  2. Внешние техногенные риски:

    • воздействия природы;
    • террористические акты;
    • военные действия в регионе.

Классификация техногенных рисков

Существует несколько видов классификации техногенных рисков.

  1. Классификация техногенных рисков, в зависимости от масштабности:

    • планетарные катастрофы, возникающие в результате столкновения с космическими телами, либо в результате последствий «ядерной зимы». Также к ним модно отнесли глобальное потепление, смена полюсов планеты, оледенение крупных территорий;
    • земные глобальные катастрофы возникают в результате ядерного взрыва, землетрясений, извержений вулканов, масштабных цунами и наводнений. Таким катастрофам свойственна периодичность в среднем 30-40 лет;
    • национальные и региональные катастрофы. Сюда также модно отнести природные катастрофы, такие как землетрясение, цунами, извержения вулканов, отличия лишь в масштабности. Также стоит отметить аварии на магистралях трубопровода;
    • локальные и местные катастрофы, оказывают огромное влияние на определенный населенный пункт. Пример таковых: пожары (в том числе и лесные), взрывы зданий, неконтролируемые выбросы токсичных отходов, которые оказывают влияние на здоровье людей.
  2. Классификация техногенных рисков под видам воздействия:

    • химические;
    • биологические;
    • транспортные;
    • стихийные.
  3. Классификация техногенных рисков по степени причинения вреда человеку:

    • риск поражения граждан;
    • уровень летального исхода;
    • ожидаемый материальный ущерб;
    • ожидаемый природный ущерб;
    • вероятные риски.

Порядок оценки техногенных рисков

В современном мире существует способ анализа техногенного риска, который позволяет оценить масштаб будущих катастроф и их влияния на человека и среду обитания. Данный анализ состоит из ряда мероприятий, которые объединяются в единую процедуру.

К этапам процедуры оценивания техногенных рисков относят:

  • Подготовка экологических и географических данных о регионе, где планируется или уже ведется активная деятельность;
  • Сбор данных о промышленных объектах, которые уже работают в данном регионе;
  • Мониторинг характеристик среды обитания и здоровья населения региона;
  • Анализ инфраструктуры региона и создание систем безопасности, отвечающие требованиям, созданных на основе этого анализа;
  • Разработка оптимальных планов действий в чрезвычайных ситуациях, на основе анализа.

Таким образом становится понятно, что изучение и анализ техногенных рисков очень важен в современном мире, немалую роль в этом играет ответственный подход к созданию надежных технических систем, которые в будущем могут свести риск возникновения техногенной катастрофы к минимуму.

Источник: https://spravochnick.ru/bezopasnost_zhiznedeyatelnosti/nadezhnost_tehnicheskih_sistem_i_tehnogennyy_risk/

Техногенные риски: виды, анализ, последствия

Понятия риск и надежность связанные с техникой. Надёжность технических систем и техногенный риск

В последние десятилетия из телевизионных передач, новостей и прессы мы все больше узнаем об участившихся катастрофах: авариях автомашин, случаях крушений на железных дорогах, пожарах и неисправностях самолетов (вертолетов), а также теплоходов. Не значит ли это, что жить в мире становится все труднее, а прогресс замещается регрессом? Развиваясь в русле прогресса, сталкиваемся ли мы с растущим риском? Преодолимо ли это и как с этим бороться?

Опасности природного происхождения

Природные экологические и техногенные риски были всегда. Они имеют объективные причины и являются следствием развития эволюции. Можем отметить, что к опасностям природного происхождения относятся: землетрясения в неустойчивых зонах, океанические цунами в южных морях, извержения пепло-лавовых вулканов, сильнейшие ураганы и смерчи.

Также проявляются такие опасности, как смерчи (торнадо), горные сели и лавины, бушующие на равнинах метели и бураны, речные наводнения и потопы, заливающие огромные пространства, и буйства огненной стихии – пожары.

Кроме того, Земля и из космоса подвергается опасностям: это астероиды, падающие на Землю, осколки от взрывов космических ракет и станций, окруживших планету сплошной “сферой Дайсона”, и т. д. Крупнейшими природными катастрофами также являются тропические штормы и наводнения от цунами, обширные засухи, свирепствующие на материках и меняющие ход истории.

Катастрофы такого типа в процентном соотношении распределяются так: соответственно, 33 %, далее 30 %, 15 % и 11 % от общего верхнего уровня катастроф. На другие виды катастроф останется всего 11 %.

На планете нет такого места, где бы не было крупнейших катастроф. Наибольшее их количество приходится на восточную часть евразийского континента (39 % от общего числа катастроф, случившихся на Земле), далее по убыванию идут обе Америки (25 %), потом Европа (14 %) и Африка (13 %). На Океанию остается 10 %.

Возникает парадокс современной цивилизации: с эпохой НТР жизнь улучшается, средняя продолжительность жизни растет, мир становится безопаснее, но число крупных природных техногенных аварий и катастроф растет.

Итоги Всемирной конференции (Иокогама, 1994 г.) определили, что ущерб от высокоопасных природных проявлений каждый год увеличивается на шесть процентов.

В истории человечества крупные, планетарного значения катастрофы – экологические, природные и техногенные – происходили несколько раз.

На заре развития человека и общества первая эколого-технологическая катастрофа произошла при переходе от охотничьего образа жизни и собирательства к оседлому земледелию. Здесь причиной катастрофы выступал не разум, а стандарты и навыки “пещерного” мышления.

Разум того человека мало отличался от современного. Им мешал накопленный опыт, локальные природные и социальные условия, также они не могли спрогнозировать будущее. Также не раз возникали локальные экологические кризисы: Месопотамия, Древний Египет, древняя Индия..

.

Природно-техногенными рисками стратегического значения являются возникновение и упадок цивилизаций (государств), научно-техническая революция, охватившая всю Землю. А также реализующийся на глазах экологический (природно-технологический) кризис вкупе с глобальным потеплением (по другим источникам – охлаждением).

Причины возникновения

Очень быстрыми темпами растет количество населения в городах. С 1970 г. численность людей на Земле возрастала на 1,7 % в год, а в городах и вовсе на 4 %.

Увеличивался процент переселенцев в городах, они осваивали опасные для проживания места: свалки, склоны городских оврагов, поймы нечистых рек, прибрежные малообжитые участки и трассы тепловых линий, подвалы.

Ситуация осложняется отсутствием необходимой инженерной инфраструктуры на новых территориях и на незаконченных стройках зданий и домов, не прошедших экологическую, технологическую экспертизу. Все это указывает на то, что города оказываются в центре стихийных бедствий. Отсюда и беды людей, приобретающие массовый характер.

Состоявшаяся в мае 1994 г.

Всемирная конференция в городе Иокогама (Япония) приняла декларацию, констатирующую, что уменьшение ущерба от природных опасностей должно являться приоритетным направлением в государственной стратегии устойчивого развития. Такая стратегия развития (стратегия борьбы с природными опасностями) должна основываться на прогнозировании и своевременном предупреждении населения.

Определение термина

Техногенный риск – это общий показатель функциональной работы всех элементов системы в техносфере. Он характеризует возможность реализации опасностей и катастроф при использовании машин и механизмов.

Определяется через показатель опасного воздействия на объекты и живые существа. В теории принято обозначать: техногенный риск – Rt, индивидуальный риск – Ri, социальный риск – Rc.

Индивидуальный и социальный риски в зонах опасного (технолого-экологического) объекта зависят от значения Rt-объекта. По мере удаления от объекта опасность уменьшается.

Классификация

Техногенные риски принято делить на внутренние и внешние. К внутренним рискам относятся:

  • внутренние технические разрушения или техногенные аварии (возникающие подземные воды и т. д.);
  • внутренние возникающие пожары (огненные торнадо) и производственные взрывы.

К внешним рискам относятся:

  • природные воздействия, связанные с кризисными явлениями окружающей природной среды;
  • внешние ураганные пожары и взрывы на промышленных объектах;
  • случаи актов терроризма, имеющие социальные последствия;
  • наступательные операции и военные действия с применением новейших вооружений.

Классы рисков по масштабу

Вследствие различия по видам последствий природно-техногенные риски можно разделить на допустимые классы:

  • планетарные техногенные катастрофы;
  • земные глобальные катастрофы;
  • масштабные национальные и региональные катастрофы;
  • локальные местные и объектовые аварии.

Можем выделить, что катастрофы планетарного масштаба возникают в результате столкновения с крупными астероидами, от последствий “ядерной зимы”. Катастрофы планетарного значения также возникают из-за смен полюсов Земли, оледенений огромных территорий, экологических потрясений и иных воздействий.

К глобальным рискам относятся опасности, исходящие от ядерных реакторов при их взрывах; от атомных объектов военного и другого назначения; от природных землетрясений и извержений вулканов, от цунами, затопляющих материки, от ураганов и т. п. Периодичность повторений – 30-40 лет.

Национальные и региональные опасности объединим в один ряд: причины их возникновения (и последствия от них) одни и те же. Это сильнейшие землетрясения, наводнения и лесные (степные) пожары.

Аварии на магистральных трубопроводах создают дополнительный риск для транспортных линий и линий электропередач.

Угрозы при транспортировке больших масс людей и опасных грузов имеют важное значение в регионах.

Локальные местные и объектные аварии имеют большое значение, особенно для городов и окрестных районов. Такие явления, как обрушение зданий, пожары и взрывы на производстве и в гражданском строительстве, выбросы радиоактивных и отравляющих веществ, заметно сказываются на здоровье и жизни людей.

Итак, рассматривая вопрос о технических системах и техногенных рисках, можем резюмировать, что при нахождении в зонах действия ТС человек подвергается воздействию, которое определяется свойствами ТС и длительностью пребывания в опасной зоне. В связи с этим все более актуальной становится проблема надежности систем и технологического оборудования.

Риски техногенного характера классифицируются:

  • по видам воздействия: на химические, радиационные, биологические и транспортные, а также на стихийные бедствия;
  • по степени причинения ущерба: риск поражения человека, уровень риска летального исхода индивида, ожидаемый риск материального ущерба, риск ущерба природной среде, иные интегральные (вероятностные) риски.

Для чего нужен анализ

Анализ техногенного риска – это процесс узнавания опасностей и оценка будущих аварий на объектах производства, имущества или оценка ущерба окружающей среде.

Также это анализ распознавания опасностей и оценка риска для всех групп людей и отдельного человека, имущества и окружающей природной среды. Степень риска показывает верхнюю оценку вероятности опасного события с негативным результатом и возможную потерю.

Оценка риска предусматривает анализ его частоты, анализ последствий от ТС и их интегральное сочетание.

Итак, техногенные экологические риски в целом выражают:

  • вероятность экологических бедствий, возникающих в результате хозяйственной деятельности;
  • вероятность экологических катастроф, вызванных авариями ТС.

Экологические риски принято характеризовать по видам:

  • социально-экологический риск;
  • эколого-экономический риск;
  • технический и индивидуальный риск.

Процедура оценивания рисков

Оценка техногенных рисков производится по процедуре, включающей:

  1. Создание эколого-географической базы данных о регионе.
  2. Инвентаризацию опасных промышленных объектов в регионе и видов хозяйственной деятельности.
  3. Оценку количественных характеристик для окружающей среды (ОС) и здоровья всего населения в регионе.
  4. Анализ инфраструктуры региона и организацию систем безопасности, также в случаях чрезвычайных ситуаций (ЧС).
  5. Полную разработку и обоснование вектора стратегий и оптимальных планов действий.
  6. Формулировку суммарных стратегий управления и разработку общих планов оперативных действий.

Способы уменьшения риска

Снижение техногенного риска зиждется на таких передовых методах, как:

  1. Построение систем защиты от техногенных (экологических) аварий и бедствий.
  2. Всеобщий анализ и мониторинг технических систем и операторов (персонала) технического объекта (ТО).
  3. Применение возможных средств для предупреждения и устранения чрезвычайных ситуаций (ЧС) в производстве.

Влияние на экологию

Последствия техногенных рисков в природе проявляются в загрязнении водоемов, почв, атмосферы и питьевой воды. К главным ресурсам питьевой воды относятся подземные грунтовые воды. Основными загрязняющими факторами являются:

  • минеральные удобрения и пестициды;
  • выгребные ямы (отстойники) на сельскохозяйственных предприятиях;
  • системы общей канализации;
  • неподконтрольные свалки мусора и заброшенные карьеры;
  • изношенные трубопроводы, расположенные под землей;
  • отходы и выбросы промышленных объектов и другие факторы.

Бытовой и строительный мусор, а также пищевые отходы могут быть источниками заболеваний.

Источник: https://FB.ru/article/466575/tehnogennyie-riski-vidyi-analiz-posledstviya

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.