+7(499)-938-42-58 Москва
+7(800)-333-37-98 Горячая линия

Гравитационная постоянная – величина не постоянная. Что такое гравитационная постоянная, как ее рассчитывают и где применяют данную величину

Что такое гравитационная постоянная, как ее рассчитывают и где применяют данную величину. Гравитационная постоянная

Гравитационная постоянная – величина не постоянная. Что такое гравитационная постоянная, как ее рассчитывают и где применяют данную величину

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения , однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер.

Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809), по крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено.

В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов , изобретённых Джоном Мичеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли.

Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат был уже достаточно близок к современному.

Ссылки

  • Гравитационная постоянная – статья из Большой советской энциклопедии

Wikimedia Foundation. 2010.

Смотреть что такое “Гравитационная постоянная” в других словарях:

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ – (тяготения постоянная) (γ, G) универсальная физ. постоянная, входящая в формулу (см.) … Большая политехническая энциклопедия- (обозначается G) коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259.0,00085).10 11 Н.м²/кг² … Большой Энциклопедический словарь- (обозначение G), коэффициент закона ГРАВИТАЦИИ Ньютона. Равен 6,67259.10 11 Н.м2.кг 2 … Научно-технический энциклопедический словарьФундаментальная физ. константа G, входящая в закон тяготения Ньютона F=GmM/r2, где m и М массы притягивающихся тел (матер. точек), r расстояние между ними, F сила притяжения, G= 6,6720(41)X10 11 Н м2 кг 2(на 1980). Наиболее точно значение Г. п.… … Физическая энциклопедиягравитационная постоянная – — Тематики нефтегазовая промышленность EN gravitational constant … Справочник технического переводчикагравитационная постоянная – gravitacijos konstanta statusas T sritis fizika atitikmenys: angl. gravitation constant; gravity constant vok. Gravitationskonstante, f rus. гравитационная постоянная, f; постоянная всемирного тяготения, f pranc. constante de la gravitation, f … Fizikos terminų žodynas- (обозначается G), коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259 + 0,00085)·10 11 Н·м2/кг2. * * * ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ (обозначается G), коэффициент… … Энциклопедический словарьТяготения постоянная, универс. физ. постоянная G, входящая в ф лу, выражающую ньютоновский закон тяготения: G = (6,672 59 ± 0,000 85)*10 11Н*м2/кг2 … Большой энциклопедический политехнический словарьКоэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r2 , где F сила притяжения, М и m массы притягивающихся тел, r расстояние между телами. Другие обозначения Г. п.: γ или f (реже k2). Числовое… … Большая советская энциклопедия- (обозначается G), коэф. пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259±0,00085) х 10 11 Н х м2/кг2 … Естествознание. Энциклопедический словарь

Книги

  • Вселенная и физика без “темной энергии” (открытия, идеи, гипотезы). В 2 томах. Том 1 , О. Г. Смирнов. Книги посвящены проблемам физики и астрономии, существующим в науке десятки и сотни лет от Г. Галилея, И. Ньютона, А. Эйнштейна до наших дней. Мельчайшие частицы материи и планеты, звезды и…

Все попытки экспериментаторов по уменьшению погрешности измерений гравитационной постоянной Земли до сего времени сводились к нулю.

Как было отмечено ранее, со времен Кавендиша точность измерения этой постоянной практически не увеличилась. За два с лишним столетия точность измерения не сдвинулась с места.

Такую ситуацию можно назвать по аналогии с «ультрафиолетовой катастрофой» как «катастрофа гравитационной постоянной». Из ультрафиолетовой катастрофы выбрались с помощью квантов, а как выйти из катастрофы с гравитационной постоянной?

Из крутильных весов Кавендиша уже ничего не выжмешь, поэтому выход можно найти, воспользовавшись усредненным значением ускорения свободного падения и вычислить G из известной формулы:

Где, g – ускорение свободного падения (g=9,78 м/с 2 – на экваторе; g=9,832 м/с 2 – на полюсах).

R– радиус Земли, м,

M – масса Земли, кг.

Стандартное значение ускорения свободного падения, принятое при построении систем единиц, равно: g=9,80665 . Отсюда усредненное значение G будет равно:

В соответствии с полученным G, уточним температуру из пропорции:

6,68·10 -11 ~х=1~4,392365689353438·10 12

Данная температура соответствует по шкале Цельсия 20,4 o .

Такой компромисс, я думаю, вполне мог бы удовлетворить две стороны: экспериментальную физику и комитет (КОДАТА), чтобы периодически не пересматривать и не изменять значение гравитационной постоянной для Земли.

Можно «законодательно» утвердить нынешнее значение гравитационной постоянной для Земли G=6,67408·10 -11 Нм 2 /кг 2 , но скорректировать стандартное значение g=9,80665, несколько уменьшив его значение.

Кроме того, если использовать среднюю температуру Земли, равную 14 o С, то гравитационная постоянная будет равна G=6,53748·10 -11 .

Итак, у нас имеются три значения, претендующих на пьедестал гравитационной постоянной G для планеты Земля: 1) 6,67408·10 -11 м³/(кг·с²); 2) 6,68·10 -11 м³/(кг·с²); 3) 6,53748·10 -11 м³/(кг·с²).

Комитету КОДАТА остается вынести окончательный вердикт, какую из них утвердить как гравитационную постоянную Земли.

Мне могут возразить, если гравитационная постоянная зависит от температуры взаимодействующих тел, то силы притяжения днем и ночью, зимой и летом должны отличаться. Да, именно так и должно быть, с малыми телами.

Но Земля огромный, быстро вращающийся шар, имеет громадный запас энергии. Отсюда, интегральное количество крафонов зимой и летом, днем и ночью, вылетающих из Земли, одинаково.

Поэтому, ускорение свободного падения на одной широте остается всегда постоянным.

Если переместиться на Луну, где разность температур дневного и ночного полушарий сильно разнятся, то гравиметры должны зафиксировать разницу силы притяжения.

11 комментариев

    Только один вопрос к Вам:

    Или у Вас в постранстве энергия не в сфере распространяется?

И если Вы уж решили перейти к температуре, то в точках центров масс, правильней конечно же изпускающих энергию, она же неизвестна (экспериментально же она никак не может быть подтверждена), соответственно, её ешё вычислить необходимо.

Ну и самого осмысленного описания процесса гравитационного взаимодействия тел у Вас и в помине нет, какие то «красные фотоны (крафоны) прилетели в тело, принесли энергию, это понимаемо, но не даёт ответа на вопрос: «почему при этом оно должно начать двигаться (перемещаться) именно в ту сторону, с которой они прибыли, а не в противотоложную ей, то есть согласно приложенной силе (приданному от этих ваших крафонов импульсу энергии)?»

Только один вопрос к Вам:Если Вы уже начали говорить об энергии, то почему напрочь забыли о 4Пи перед R2?!Или у Вас в постранстве энергия не в сфере распространяется?И если Вы уж решили перейти к температуре, то в точках центров масс, правильней конечно же изпускающих энергию, она же неизвестна (экспериментально же она никак не может быть подтверждена), соответственно, её ешё вычислить необходимо.Ну и самого осмысленного описания процесса гравитационного взаимодействия тел у Вас и в помине нет, какие то «красные фотоны (крафоны) прилетели в тело, принесли энергию, это понимаемо, но не даёт ответа на вопрос: «почему при этом оно должно начать двигаться (перемещаться) именно в ту сторону, с которой они прибыли, а не в противотоложную ей, то есть согласно приложенной силе (приданному от этих ваших крафонов импульсу энергии)?»________________________________________________________Вместо одного заявленного вопроса оказалось три, но суть не в этом.1. Касаемо 4π. В формулах (9) и (10) R2 – это расстояние от тела (предмета) до центра Земли. Откуда здесь должна появиться 4π – не понятно.2. Что касается максимальной температура вещества в природе. Вы, очевидно, поленились открыть ссылку в конце статьи: «Гравитационная постоянная величина – переменная».3. Теперь относительно «осмысленного описания процесса гравитационного взаимодействия тел». Все осмыслено и описано. Относительно, в какую сторону летят эти самые крафоны, читаем статьи: « ». Солнечные фотоны стартуют с поверхности Светила без отдачи, с приобретением импульсов придачи. Фотон, в противовес материальному миру, не имеет инерции – его импульс возникает в момент отрыва от источника без отдачи!Явление отдачи наблюдается только в телах, когда под действием внутренних сил оно распадается на части, разлетающееся в противоположные стороны. Фотон не распадается на части, он не расстается со своим приобретенным импульсом до своего поглощения, поэтому для него выражение (3) будет справедливо.« » , и ч.2 .Цитата из 2-й части: «Крафоны из элементарного шарика вылетают спонтанно, по разным направлениям по нормали его поверхности. Притом, направлены они, в основном, в атмосферу, т.е. в более разреженный электромагнитный эфир (ЭМЭ) по сравнению с ЭМЭ вод Мирового океана. В принципе та же картина наблюдается и на материках».

Уважаемые читатели, на тему: как возникает гравитация, и кто является ее переносчиком, читайте всю главу под названием: «Гравитация». Конечно, можно и выборочно, для этого кликайте по кнопке «Карта сайта» верхнего меню, расположенного над шапкой сайта.

Добавление к предыдущему комментарию.

12окт.2016г. На страницах электронного научно-практического журнала «Современные научные исследования и инновации» опубликована моя статья под названием: «Фотонно-квантовая гравитация». В статье изложена суть гравитации. Прочесть по ссылке:

Источник: https://sunbox.ru/chto-takoe-gravitacionnaya-postoyannaya-kak-ee-rasschityvayut-i-gde-primenyayut.html

Новые измерения гравитационной постоянной еще сильнее запутывают ситуацию • Новости науки

Гравитационная постоянная – величина не постоянная. Что такое гравитационная постоянная, как ее рассчитывают и где применяют данную величину

Эксперименты по измерению гравитационной постоянной G, проведенные в последние годы несколькими группами, демонстрируют поразительное несовпадение друг с другом.

Опубликованное на днях новое измерение, выполненное в Международном бюро мер и весов, отличается от всех них и только усугубляет проблему.

Гравитационная постоянная остается на редкость неподатливой для точного измерения величиной.

Измерения гравитационной постоянной

Гравитационная постоянная G, она же постоянная Ньютона, — одна из самых важных фундаментальных констант природы.

Это та константа, которая входит в закон всемирного тяготения Ньютона; она не зависит ни от свойств притягивающихся тел, ни от окружающих условий, а характеризует интенсивность самой силы гравитации.

Естественно, что такая фундаментальная характеристика нашего мира важна для физики, и она должна быть аккуратно измерена.

Однако ситуация с измерением G до сих пор остается очень необычной. В отличие от многих других фундаментальных констант, гравитационная постоянная с большим трудом поддается измерению.

Дело в том, что аккуратный результат можно получить только в лабораторных экспериментах, через измерение силы притяжения двух тел известной массы. Например, в классическом опыте Генри Кавендиша (рис.

 2) на тонкой нити подвешивается гантелька из двух тяжелых шаров, и когда сбоку к этим шарам пододвигают другое массивное тело, то сила гравитации стремится повернуть эту гантельку на некоторый угол, пока вращательный момент сил слегка закрученной нити не скомпенсирует гравитацию. Измеряя угол поворота гантельки и зная упругие свойства нити, можно вычислить силу гравитации, а значит, и гравитационную постоянную.

Это устройство (оно называется «крутильные весы») в разных модификациях используется и в современных экспериментах. Такое измерение очень просто по сути, но трудно по исполнению, поскольку оно требует точного знания не только всех масс и всех расстояний, но и упругих свойств нити, а также обязывает минимизировать все побочные воздействия, как механические, так и температурные.

Недавно, правда, появились и первые измерения гравитационной постоянной другими, атомно-интерферометрическими методами, которые используют квантовую природу вещества. Однако точность этих измерений пока сильно уступает механическим установкам, хотя, возможно, за ними будущее (см. подробности в новости Гравитационная постоянная измерена новыми методами, «Элементы», 22.01.2007).

Так или иначе, но, несмотря на более чем двухсотлетнюю историю, точность измерений остается очень скромной. Нынешнее «официальное» значение, рекомендованное американским Национальным институтом стандартизации (NIST), составляет (6,67384 ± 0,00080)·10–11 м3·кг–1·с–2.

Относительная погрешность тут составляет 0,012%, или 1,2·10–4, или, в еще более привычных для физиков обозначениях, 120 ppm (миллионных долей), и это на несколько порядков хуже, чем точность измерения других столь же важных величин.

Более того, вот уже несколько десятилетий измерение гравитационной постоянной не перестает быть источником головной боли для физиков-экспериментаторов. Несмотря на десятки проведенных экспериментов и усовершенствование самой измерительной техники, точность измерения так и осталась невысокой.

Относительная погрешность на уровне 10–4 была достигнута еще 30 лет назад, и никакого улучшения с тех пор нет.

Ситуация по состоянию на 2010 год

В последние несколько лет ситуация стала еще более драматичной. В 2008–2010 годах три группы обнародовали новые результаты измерения G. Над каждым из них команда экспериментаторов работала годами, причем не только непосредственно измеряла величину G, но и тщательно искала и перепроверяла всевозможные источники погрешностей.

Каждое из этих трех измерений обладало высокой точностью: погрешности составляли 20–30 ppm. По идее, эти три измерения должны были существенно улучшить наше знание численной величины G. Беда лишь в том, что все они отличались друг от друга аж на 200–400 ppm, то есть на целый десяток заявленных погрешностей! Эта ситуация по состоянию на 2010 год показана на рис.

 3 и кратко описана в заметке Неловкая ситуация с гравитационной постоянной.

Совершенно ясно, что сама гравитационная постоянная тут не виновата; она действительно обязана быть одной и той же всегда и везде.

Например, есть спутниковые данные, которые хоть и не позволяют хорошо измерить численное значение константы G, зато позволяют убедиться в ее неизменности — если бы G изменилась за год хоть на одну триллионную долю (то есть на 10–12), это уже было бы заметно.

Поэтому единственный вытекающий отсюда вывод таков: в каком-то (или в каких-то) из этих трех экспериментов есть неучтенные источники погрешностей. Но вот в каком?

Единственный способ попытаться разобраться, это повторять измерения на других установках, и желательно разными методами.

К сожалению, особенного разнообразия методик здесь пока достичь не удается, поскольку во всех экспериментах используется то или иное механическое устройство.

Но всё же разные реализации могут обладать разными инструментальными погрешностями, и сравнение их результатов позволит разобраться в ситуации.

Новое измерение

На днях в журнале Physical Review Letters было опубликовано одно такое измерение. Небольшая группа исследователей, работающих в Международном бюро мер и весов в Париже, с нуля построила аппарат, который позволил измерить гравитационную постоянную двумя разными способами.

Он представляет из себя те же крутильные весы, только не с двумя, а с четырьмя одинаковыми цилиндрами, установленными на диске, подвешенном на металлической нити (внутренняя часть установки на рис. 1).

Эти четыре груза гравитационно взаимодействуют с четырьмя другими, более крупными цилиндрами, насаженными на карусель, которую можно повернуть на произвольный угол.

Схема с четырьмя телами вместо двух позволяет минимизировать гравитационное взаимодействие с несимметрично расположенными предметами (например, стенками лабораторной комнаты) и сфокусироваться именно на гравитационных силах внутри установки.

Сама нить имеет не круглое, а прямоугольное сечение; это, скорее, не нить, а тонкая и узкая металлическая полоска. Такой выбор позволяет ровнее передавать нагрузку по ней и минимизировать зависимость от упругих свойств вещества. Весь аппарат находится в вакууме и при определенном температурном режиме, который выдерживается с точностью до сотой доли градуса.

Это устройство позволяет выполнять три типа измерения гравитационной постоянной (см. подробности в самой статье и на страничке исследовательской группы). Во-первых, это буквальное воспроизведение опыта Кавендиша: поднесли груз, весы повернулись на некоторый угол, и этот угол измеряется оптической системой.

Во-вторых, его можно запустить в режиме крутильного маятника, когда внутренняя установка периодически вращается туда-сюда, а наличие дополнительных массивных тел изменяет период колебаний (этот способ, впрочем, исследователи не использовали). Наконец, их установка позволяет выполнять измерение гравитационной силы без поворота грузиков.

Это достигается с помощью электростатического сервоконтроля: к взаимодействующим телам подводятся электрические заряды так, чтобы электростатическое отталкивание полностью компенсировало гравитационное притяжение. Такой подход позволяет избавиться от инструментальных погрешностей, связанных именно с механикой поворота.

Измерения показали, что два метода, классический и электростатический, дают согласующиеся результаты.

Результат нового измерения показан красной точкой на рис. 4. Видно, что это измерение не только не разрешило наболевший вопрос, но и еще сильнее усугубило проблему: оно сильно отличается от всех остальных недавних измерений.

Итак, к настоящему моменту у нас имеется уже четыре (или пять, если считать неопубликованные данные калифорнийской группы) разных и при том довольно точных измерения, и все они кардинально расходятся друг с другом! Разница между двумя самыми крайними (и хронологически — самыми последними) значениями уже превышает 20(!) заявленных погрешностей.

Что касается нового эксперимента, тут надо добавить вот что. Эта группа исследователей уже выполняла аналогичный эксперимент в 2001 году. И тогда у них тоже получалось значение, близкое к нынешнему, но только чуть менее точное (см. рис. 4).

Их можно было бы заподозрить в простом повторении измерений на одном и том же железе, если бы не одно «но» — тогда это была другая установка. От той старой установки они сейчас взяли только 11-килограммовые внешние цилиндры, но весь центральный прибор был сейчас построен заново.

Если бы у них действительно был какой-то неучтенный эффект, связанный именно с материалами или изготовлением аппарата, то он вполне мог измениться и «утащить за собой» новый результат. Но результат остался примерно на том же месте, что и в 2001 году.

Авторы работы видят в этом лишнее доказательство чистоты и достоверности их измерения.

Ситуация, когда сразу четыре или пять результатов, полученных разными группами, все различаются на десяток-другой заявленных погрешностей, по-видимому, для физики беспрецедентна. Какой бы высокой ни была точность каждого измерения и как бы авторы ею ни гордились, для установления истины она сейчас не имеет никакого значения.

И пока что пытаться на их основании узнать истинное значение гравитационной постоянной можно только одним способом: поставить значение где-то посередине и приписать погрешность, которая будет охватывать весь этот интервал (то есть раза в полтора-два ухудшить нынешнюю рекомендованную погрешность).

Можно лишь надеяться, что следующие измерения будут попадать в этот интервал и постепенно будут давать предпочтение какому-то одному значению.

Так или иначе, но гравитационная постоянная продолжает оставаться головоломкой измерительной физики. Через сколько лет (или десятилетий) эта ситуация действительно начнет улучшаться, сейчас предсказать трудно.

Источник: T. Quinn, H. Parks, C. Speake, and R. Davis. Improved Determination of G Using Two Methods // Phys. Rev. Lett. 111, 101102 (2013).

См. также:1) Милюков В. К., Сагитов М. У. Гравитационная постоянная в астрономии. Серия: Космонавтика, астрономия, М., Знание, 1985 г.

2) C. Speake. Newton's constant and the twenty-first century laboratory // Phil. Trans. R. Soc. A. 2005. V. 363. P. 2265–2287.

Игорь Иванов

Источник: https://elementy.ru/news?newsid=432079

Гравитационная постоянная

Гравитационная постоянная – величина не постоянная. Что такое гравитационная постоянная, как ее рассчитывают и где применяют данную величину

Значение гравитационной постоянной

Гравитационная постоянная или иначе – постоянная Ньютона – одна из основных констант, используемых в астрофизике. Фундаментальная физическая постоянная определяет силу гравитационного взаимодействия. Как известно, силу, с которой каждое из двух тел, взаимодействующих посредством гравитации, притягивается можно высчитать из современной формы записи закона всемирного тяготения Ньютона:

Гравитационное взаимодействие двух тел

Здесь:

  • m1 и m2 — тела, взаимодействующие посредством гравитации
  • F1 и F2 – векторы силы гравитационного притяжения, направленные к противоположному телу
  • r – расстояние между телами
  • G – гравитационная постоянная

Данный коэффициент пропорциональности равен модулю силы тяготения первого тела, которая действует на точечное второе тело единичной массы, при единичном расстоянии между этими телами.

G = 6,67408(31)·10−11 м3·с−2·кг−1, или Н·м²·кг−2.

Очевидно, что данная формула широко применима в области астрофизики и позволяет рассчитать гравитационное возмущение двух массивных космических тел, для определения дальнейшего их поведения.

Работы Ньютона

Примечательно, что в трудах Ньютона (1684—1686) гравитационная постоянная в явном виде отсутствовала, как и в записях других ученых аж до конца XVIII-го века.

Исаак Ньютон (1643 — 1727)

Ранее использовался так называемый гравитационный параметр, который равнялся произведению гравитационной постоянной на массу тела.

Нахождение такого параметра в то время было более доступно, поэтому на сегодняшний день значение гравитационного параметра различных космических тел (в основном Солнечной системы) более точно известно, нежели порознь значение гравитационной постоянной и массы тела.

µ = GM

Здесь: µ — гравитационный параметр, G – гравитационная постоянная, а M — масса объекта.

Размерность гравитационного параметра — м3с−2.

Следует отметить тот факт, что значение гравитационной постоянной несколько варьируется даже до сегодняшнего дня, а чистое значение масс космических тел в то время было определить довольно сложно, поэтому гравитационный параметр нашел более широкое применение.

Эксперимент Кавендиша

Эксперимент по определению точного значения гравитационной постоянной впервые предложил английский естествоиспытатель Джон Мичелл, который сконструировал крутильные весы.

Однако, не успев провести эксперимент, в 1793-м году Джон Мичелл умер, а его установка перешла в руки Генри Кавендишу – британскому физику.

Генри Кавендиш улучшил полученное устройство и провел опыты, результаты которых были опубликованы в 1798-м году в научном журнале под названием «Философские труды Королевского общества».

Генри Кавендиш (1731 — 1810)

Установка для проведения эксперимента состояла из нескольких элементов. Прежде всего она включала 1,8-метровое коромысло, к концам которого крепились свинцовые шарики с массой 775 г и диаметром 5 см. Коромысло было подвешено на медной 1-метровой нити.

Несколько выше крепления нити, ровно над ее осью вращения устанавливалась еще одна поворотная штанга, к концам которой жестко крепились два шара массой 49,5 кг и диаметром 20 см. Центры всех четырех шаров должны были лежать в одной плоскости.

В результате гравитационного взаимодействия притяжение малых шаров к большим должно быть заметно. При таком притяжении нить коромысла закручивается до некоторого момента, и ее сила упругости должна равняться силе тяготения шаров.

Генри Кавендиш измерял силу тяготения посредством измерения угла отклонения плеча коромысла.

Установка Генри Кавендиша

Более наглядное описание эксперимента доступно в видео ниже:

Для получения точного значения константы Кавендишу пришлось прибегнуть к ряду мер, снижающих влияние сторонних физических факторов на точность эксперимента.

В действительности Генри Кавендиша проводил эксперимент не для того, чтобы выяснить значение гравитационной постоянной, а для расчета средней плотности Земли. Для этого он сравнивал колебания тела, вызванные гравитационным возмущением шара известной массы, и колебания, вызванные тяготением Земли.

Он достаточно точно вычислил значение плотности Земли – 5,47 г/см3 (сегодня более точные расчеты дают 5,52 г/см3).

Согласно различным источникам, значение гравитационной постоянной, высчитанное из гравитационного параметра с учетом плотности Земли, полученной Кавердишем, составило G=6,754·10−11 м³/(кг·с²), G = 6,71·10−11м³/(кг·с²) или G = (6,6 ± 0,04)·10−11м³/(кг·с²). До сих пор неизвестно, кто впервые получил численное значение постоянной Ньютона из работ Генри Кавердиша.

Измерение гравитационной постоянной

Наиболее раннее упоминание гравитационной постоянной, как отдельной константы, определяющей гравитационное взаимодействие, найдено в «Трактате по механике», написанном в 1811-м году французским физиком и математиком — Симеоном Дени Пуассоном.

Измерение гравитационной постоянной проводится различными группами ученых и по сей день. При этом, несмотря на обилие доступных исследователям технологий, результаты экспериментов дают различные значения данной константы.

Из этого можно было бы сделать вывод, что, возможно, гравитационная постоянная на самом деле непостоянная, а способна менять свое значение, с течением времени или от места к месту.

Однако, если значения константы по результатам экспериментов разнятся, то неизменность этих значений в рамках этих экспериментов уже проверена с точностью до 10-17.

Кроме того, согласно астрономическим данным постоянная G не изменилась в значительной степени за несколько последних сотен миллионов лет. Если постоянная Ньютона и способна меняться, то ее изменение не превысило б отклонение на число 10-11 – 10-12 в год.

Примечательно, что летом 2014-го года совместно группа итальянских и нидерландских физиков провели эксперимент по измерению гравитационной постоянной совсем иного вида.

В эксперименте использовались атомные интерферометры, которые позволяют отследить влияние земной гравитации на атомы.

Значение константы, полученное таким образом, имеет погрешность 0,015% и равняется G = 6.67191(99) × 10−11 м3·с−2·кг−1.

Источник: https://SpaceGid.com/gravitatsionnaya-postoyannaya.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.