+7(499)-938-42-58 Москва
+7(800)-333-37-98 Горячая линия

Что такое сила Ампера? Формула силы ампера.

SA. Сила Ампера

Что такое сила Ампера? Формула силы ампера.

Действие магнитного поля на проводник с током исследовал экспериментально Андре Мари Ампер (1820 г.). Меняя форму проводников и их расположение в магнитном поле, Ампер сумел определить силу, действующую на отдельный участок проводника с током (элемент тока). В его честь эту силу назвали силой Ампера.

  • Сила Ампера — это сила, с которой магнитное поле действует на помещенный в него проводник с током.

Согласно экспериментальным данным модуль силы F:

пропорционален длине проводника l, находящегося в магнитном поле;пропорционален модулю индукции магнитного поля B;пропорционален силу тока в проводнике I;зависит от ориентации проводника в магнитном поле, т.е. от угла α между направлением тока и вектора индукции магнитного поля \(~\vec B\).

Тогда:

модуль силы Ампера равен произведению модуля индукции магнитного поля B, в котором находится проводник с током, длины этого проводника l, силы тока I в нем и синуса угла между направлениями тока и вектора индукции магнитного поля

\(~F_A = I \cdot B \cdot l \cdot \sin \alpha\) ,

  • Этой формулой можно пользоваться:если длина проводника такая, что индукция во всех точках проводника может считаться одинаковой;если магнитное поле однородное (тогда длина проводника может быть любой, но при этом проводник целиком должен находиться в поле).

Для определения направления силы Ампера применяют правило левой руки: если ладонь левой руки расположить так, чтобы вектор индукции магнитного поля (\(~\vec B\)) входил в ладонь, четыре вытянутых пальца указывали направление тока (I), тогда отогнутый на 90° большой палец укажет направление силы Ампера (\(~\vec F_A\)) (рис. 1, а, б).

  • а
  • б

Рис. 1

Поскольку величина B∙sin α представляет собой модуль компоненты вектора индукции, перпендикулярной проводнику с током, \(~\vec B_{\perp}\) (рис. 2), то ориентацию ладони можно определять именно этой компонентой — перпендикулярная составляющая к поверхности проводника должна входить в открытую ладонь левой руки.

Из (1) следует, что сила Ампера равна нулю, если проводник с током расположен вдоль линий магнитной индукции, и максимальна, если проводник перпендикулярен этим линиям.

Силы, действующие на проводник с током в магнитном поле, широко используются в технике. Электродвигатели и генераторы, устройства для записи звука в магнитофонах, телефоны и микрофоны — во всех этих и во множестве других приборов и устройств используется взаимодействие токов, токов и магнитов и т.д.

Сила Лоренца

Выражение для силы, с которой магнитное поле действует на движущийся заряд, впервые получил голландский физик Хендрик Антон Лоренц (1895 г.). В его честь эта сила называется силой Лоренца.

  • Сила Лоренца — это сила, с которой магнитное поле действует на движущуюся в нем заряженную частицу.

Модуль силы Лоренца равен произведению модуля индукции магнитного поля \(~\vec B\), в котором находится заряженная частица, модуля заряда q этой частицы, ее скорости υ и синуса угла между направлениями скорости и вектора индукции магнитного поля

\(~F_L = q \cdot B \cdot \upsilon \cdot \sin \alpha\).

Для определения направления силы Лоренца применяют правило левой руки: если левую руку расположить так, чтобы вектор индукции магнитного поля (\(~\vec B\)) входил в ладонь, четыре вытянутых пальца указывали направления скорости движения положительно заряженной частицы (\(~\vec \upsilon\)), тогда отогнутый на 90° большой палец укажет направление силы Лоренца (\(~\vec F_L\)) (рис. 3, а). Для отрицательной частицы четыре вытянутых пальца направляют против скорости движения частицы (рис. 3, б).

  • а
  • б

Рис. 3

Поскольку величина B∙sin α представляет собой модуль компоненты вектора индукции, перпендикулярной скорости заряженной частицы, \(~\vec B_{\perp}\), то ориентацию ладони можно определять именно этой компонентой — перпендикулярная составляющая к скорости заряженной частицы должна входить в открытую ладонь левой руки.

Так как сила Лоренца перпендикулярна вектору скорости частицы, то она не может изменить значение скорости, а изменяет только ее направление и, следовательно, не совершает работы.

Движение заряженной частицы в магнитном поле

1. Если скорость υ заряженной частицы массой m направлена вдоль вектора индукции магнитного поля, то частица будет двигаться по прямой с постоянной скоростью (сила Лоренца FL = 0, т.к. α = 0°) (рис. 4, а).

  • а
  • б
  • в

Рис. 4

2. Если скорость υ заряженной частицы массой mперпендикулярна вектору индукции магнитного поля, то частица будет двигаться по окружности радиуса R, плоскость которой перпендикулярна линиям индукции (рис. 4, б). Тогда 2-ой закон Ньютона можно записать в следующем виде:

\(~m \cdot a_c = F_L\) ,

где \(~a_c = \dfrac{\upsilon2}{R}\) , \(~F_L = q \cdot B \cdot \upsilon \cdot \sin \alpha\) , α = 90°, т.к. скорость частицы перпендикулярна вектору магнитной индукции.

Тогда

\(~\dfrac{m \cdot \upsilon2}{R} = q \cdot B \cdot \upsilon\) .

3. Если скорость υ заряженной частицы массой m направлена под угломα (0 < α< 90°) к вектору индукции магнитного поля, то частица будет двигаться по спирали радиуса R и шагом h (рис. 4, в).

Действие силы Лоренца широко используют в различных электротехнических устройствах:
  1. электронно-лучевых трубках телевизоров и мониторов;
  2. ускорителях заряженных частиц;
  3. экспериментальных установках для осуществления управляемой термоядерной;
  4. МГД-генераторах

и т.д.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 321-322, 324-327.
  2. Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. обучения с 12-летним сроком обучения (базовый и повышенный уровни) /В. В. Жилко, Л. Г. Маркович. — 2-е изд., исправленное. — Минск: Нар. асвета, 2008. — С. 157-164.

Источник: http://www.physbook.ru/index.php/SA._%D0%A1%D0%B8%D0%BB%D0%B0_%D0%90%D0%BC%D0%BF%D0%B5%D1%80%D0%B0

Магнитное поле. Силы

Что такое сила Ампера? Формула силы ампера.

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: сила Ампера, сила Лоренца

В отличие от электрического поля, которое действует на любой заряд, магнитное поле действует только на движущиеся заряженные частицы. При этом оказывается, что сила зависит не только от величины, но и от направления скорости заряда.

Сила Ампера

Если металлический проводник с током поместить в магнитное поле, то на этот проводник со стороны магнитного поля будет действовать сила, которая называется силой Ампера.

Происхождение силы Ампера легко понять. Ведь ток в металле является направленным движением электронов, а на каждый электрон действует сила Лоренца. Все эти силы Лоренца, действующие на свободные электроны, имеют одинаковое направление и одинаковую величину; они складываются друг с другом и дают результирующую силу Ампера.

Направление силы Ампера определяется по тем же двум правилам, сформулированным выше.

Правило часовой стрелки . Сила Ампера направлена туда, глядя откуда кратчайший поворот тока к полю виден против часовой стрелки .

Правило левой руки . Располагаем левую руку так, чтобы четыре пальца указывали направление тока, а линии поля входили в ладонь. Тогда оттопыренный большой палец укажет направление силы Ампера .

Взаимное расположение тока, поля и силы Ампера указано на рис. 2.

Рис. 2. Сила Ампера

На этом рисунке проводник имеет длину , а угол между направлениями тока и поля равен . Мы сейчас выведем выражение для абсолютной величины силы Ампера.

На каждый свободный электрон действует сила Лоренца:

где — скорость направленного движения свободных электронов в проводнике.

Пусть — число свободных электронов в данном проводнике, — их концентрация (число в единице объёма). Тогда:

где — объём проводника, — площадь его поперечного сечения. Получаем:

Мы не случайно выделили скобками четыре сомножителя. Ведь это есть не что иное, как сила тока: (вспомните выражение силы тока через скорость направленного движения свободных зарядов!). В результате приходим к окончательной формуле для силы Ампера:

(2)

Хорошую возможность поупражняться в нахождении направлений магнитного поля и силы Ампера даёт взаимодействие параллельных токов. Оказывается, два параллельных провода отталкиваются, если направления токов в них противоположны, и притягиваются, если направления токов совпадают (рис. 3).

Рис. 3. Взаимодействие параллельных токов

Обязательно убедитесь в этом самостоятельно! Делаем так. Сначала берём произвольную точку на первом проводе и определяем направление магнитного поля, создаваемого в этой точке вторым проводом (правило вам известно — см. предыдущий листок>). Ну а затем находим направление силы Ампера, действующей на первый провод со стороны магнитного поля второго провода.

Рамка с током в магнитном поле

В листках по термодинамике мы говорили о важности циклически работающих машин: они снабжают нас энергией. Понимание законов термодинамики позволило сконструировать тепловые двигатели, которые исправно служат нам и по сей день.

Понимание же законов электромагнетизма дало возможность создать циклическую машину другого типа — электродвигатель.

Мы рассмотрим один из элементов электродвигателя — рамку с током в магнитном поле. Разобравшись в её поведении, мы сможем уловить основную идею функционирования электродвигателя.

Пусть прямоугольная рамка может вращаться вокруг горизонтальной оси (рис. 4, слева). Рамка находится в вертикальном однородном магнитном поле . Ток течёт по рамке в направлении ; это направление показано соответствующими стрелками.

Рис. 4. Рамка с током в магнитном поле

Вектор называется вектором нормали; он перпендикулярен плоскости рамки и направлен туда, глядя откуда ток кажется циркулирующим против часовой стрелки. (Иными словами, вектор сонаправлен с вектором индукции магнитного поля, которое создаётся током в рамке.) Поворот рамки измеряется углом между векторами и .

Теперь определим направления сил Ампера, которые действуют на рамку со стороны магнитного поля. Эти силы расставлены на рисунке; вот вам ещё одно упражнение на правило часовой стрелки (левой руки) — обязательно проверьте правильность указанных направлений!

Силы и , приложенные к сторонам и , действуют вдоль оси вращения. Они лишь растягивают рамку и не вызывают её вращение.

Куда более интересны силы и , приложеные соответственно к сторонам и . Они лежат в горизонтальной плоскости и перпендикулярны оси вращения. Эти силы вращают рамку в направлении по часовой стрелке, если смотреть справа (рис. 4, правая часть). Вычислим момент этой пары сил относительно оси вращения рамки.

Пусть длина стороны равна . Тогда

Пусть длина стороны равна . Плечо силы , как видно из рис. 4 (справа) равно:

Таким же будет плечо силы . Отсюда получаем момент сил, вращающий рамку:

Теперь заметим, что — площадь рамки. Окончательно имеем:

(3)

В этой формуле площадь служит единственной геометрической характеристикой рамки.Это наводит на мысль, что только площадь рамки и существенна в выражении для вращающего момента. И действительно, можно доказать (разбивая рамку на бесконечно узкие полоски, неотличимые от прямоугольников), что формула (3) справедлива для рамки любой формы с площадью .

Как видно из формулы (3), максимальный вращающий момент равен:

Эта максимальная величина момента достигается при , то есть когда плоскость рамки параллельна магнитному полю.

Вращающий момент становится равным нулю при и . Оба этих положения по-своему интересны.

При плоскость рамки перпендикулярна полю, а векторы и направлены в разные стороны. Данное положение является положением неустойчивого равновенсия: стоит хоть немного шевельнуть рамку, как силы Ампера начнут её вращать в том же направлении, поворачивая вектор к вектору (убедитесь!).

При плоскость рамки также перпендикулярна полю, а векторы и сонаправлены. Это — положение устойчивого равновенсия: при отклонении рамки возникает вращающий момент, стремящийся вернуть рамку назад (убедитесь!). Начнутся колебания рамки, постепенно затухающие из-за трения.

В конце концов рамка остановится в положении ; в этом положении вектор индукции магнитного поля рамки сонаправлен с вектором индукции внешнего магнитного поля (вот почему при намагничивании вещества элементарные токи ориентируются так, что их поля направлены в сторону внешнего магнитного поля).

Полезное сопоставление: рамка занимает такое положение, что её положительная нормаль ориентируется в том же направлении, что и северный конец стрелки компаса, помещённой в это магнитное поле.

Таким образом, поведение рамки в магнитном поле становится ясным: если отклонить рамку от положения устойчивого равновесия и отпустить, то рамка будет совершать колебания.

С точки зрения совершения механической работы это не очень хорошо: если намотать нить на ось вращения и подвесить к нити груз, то груз будет то подниматься, то опускаться.

Но вот если исхитриться и заставить ток менять направление в нужные моменты, то вместо колебаний рамки начнётся её непрерывное вращение и, соответственно, непрерывный подъём подвешенного груза. Тогда-то и получится полноценный электродвигатель; идея с переменой направления тока реализуется с помощью коллектора и щёток.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/magnitnoe-pole-sily/

Закон ампера простыми словами: определение, формула, применение

Что такое сила Ампера? Формула силы ампера.

На основе магнитных явлениях построено действие электротехнических устройств. Все современные электромоторы, генераторы и множество других электромеханических приборов работают по принципу взаимодействия электрического тока с окружающими его магнитными полями. Эти взаимодействия описывает знаменитый закон Ампера, названный так в честь своего первооткрывателя.

Влияние электричества на поведение магнитной стрелки впервые обнаружил Х. К. Эрстед. Он заметил, что вопреки ожиданию, магнитное поле не параллельно вектору тока, а перпендикулярно ему.

Развивая выводы Эрстеда, и продолжая исследования в этом направлении, Мари Ампер установил [1], что электричество взаимодействует не только с магнитами, но и между собой.

Заслуга Ампера в том, что он теоретически обосновал взаимное влияние токов и предоставил формулу, позволяющую вычислять силы этого взаимодействия.

Определение и формула

Экспериментальным путём Ампер установил, что между двумя параллельными проводниками, подключенными к постоянному току, действует притяжение (однонаправленные токи) либо отталкивание (если направления противоположные). Эти силы взаимодействия определяются параметрами токов (прямо пропорциональная зависимость), и расстоянием между проводниками (обратно пропорциональная зависимость).

Расчёт амперовой силы на единицу длины проводника осуществляется по формуле:

где F – сила, I1, I2 – величина тока в проводниках, а μ – магнитная проницаемость среды, окружающей проводники (см. рис. 1).

Природой взаимодействия является магнитное поле, образованное перемещаемыми по проводникам электрическими зарядами. Под влиянием магнитного поля на электрические заряды возникает сила магнитной индукции, которую обозначают символом B.

Линии, в каждой точке которых касательные к ним совпадают с направлением соответствующих векторов магнитной индукции, получили название линий электромагнитной индукции.

Применяя мнемоническое правило буравчика, можно определить ориентацию в пространстве линий магнитной индукции.

То есть, при ввинчивании буравчика в сторону, куда направлен вектор электрического тока, движение концов его рукоятки укажет направление векторов индукции.

Из сказанного выше следует, что в проводниках, с одинаково ориентированными токами, направления векторов магнитной индукции совпадают, а значит, векторы сил направлены навстречу друг к другу, что и вызывает притяжение.

Рис. 1. Взаимодействие параллельных проводников

Подобным образом проводники взаимодействуют не только между собой, но и с магнитными полями любой природы. Если такой проводник окажется в магнитном поле, то на элемент, расположенный в зоне действия магнита, будет действовать сила, которую именуют Амперовой:

Для вычисления модуля этой силы пользуются формулой: dF = IBlsinα , где α — угол, образованный векторами индукции и ориентацией тока.

Рассмотренную нами зависимость описывает закон Ампера, формулировка которого понятна из рисунка 2.
Рис. 2. Формулировка закона Ампера

Не трудно сообразить, что когда α = 900, то sinα = 1. В этом случае величина F приобретает максимальное значение: F = B*L*I, где L– длина проводника, оказавшегося под действием магнитного поля.

Таким образом, из закона Ампера вытекает:

  • проводник с током реагирует на магнитные поля.
  • действующая сила находится в прямо пропорциональной зависимости от параметров тока, величины магнитной индукции и размеров проводника.

Обратите внимание, что на данном рисунке 3 проводник расположен под углом 90º к линиям магнитной индукции, что вызывает максимальное действие магнитных сил.

Рис. 3. Проводник в магнитном поле

Направление силы Ампера

Принимая к сведению то, что сила – векторная величина, определим её направление. Рассмотрим случай, когда проводник с током расположен между двумя полюсами магнитов под прямым углом к линиям магнитной индукции.

Выше мы установили, что согласно закону Ампера, действующая на данный проводник сила, равна: F = B*L*I. Направление вектора рассматриваемой силы определяется по результатам векторного произведения:

Если полюса магнита статичны (неподвижны), то векторное произведение будет зависеть только от параметров электричества, в частности, от того, в какую сторону оно течёт.

Направление силы Ампера определяют по известному правилу левой руки: ладонь располагают навстречу магнитным линиям, а пальцы размещают вдоль проводника, в сторону устремления тока. На ориентацию силы Ампера указывает большой палец, образующий прямой угол с ладонью (см. рис. 4).

Рис. 4. Интерпретация правила

Измените мысленно направление электрического тока, и вы увидите, что направление вектора Амперовой силы изменится на противоположное. Модуль вектора имеет прямо пропорциональную зависимость от всех сомножителей, но на практике эту величину удобно регулировать путём изменения параметров в электрической цепи (например, для регулировки мощности электродвигателя).

Применение

Закон Ампера, а точнее следствия, вытекающие из него, используются в каждом электромеханическом устройстве, где необходимо вызвать движение рабочих элементов. Самым распространённым механизмом, работа которого базируется на законе Ампера, является электродвигатель.

Применение электромоторов настолько широкое, что его можно увидеть практически во всех сферах человеческой деятельности:

  • на производстве, в качестве приводов станков и различного оборудования;
  • в бытовой сфере (бытовая электротехника);
  • в электроинструментах;
  • на транспорте;
  • в устройствах автоматики, в офисной технике и во многих других сферах.

Из закона Ампера вытекает возможность получения электротока путём перемещения проводников, находящихся в магнитном поле. На данном принципе построены все генераторы электрического тока. Благодаря этой уникальной возможности, у нас появился доступ к использованию электроэнергии для различных потребностей.

Мы буквально окружены проявлением закона Ампера. Например, просмотр телепередачи сопровождается звуком, который транслируется через динамики. Но диффузор динамика приводит в движение сила Ампера. Мы разговариваем по телефону – там тоже есть динамик и микрофон. Принцип действия современных микрофонов также основан на законе Ампера.

Вход в помещение через автоматическую раздвижную дверь, поднятие на лифте, поездка в троллейбусе, трамвае, запуск двигателя автомобиля – всё это было бы невозможным, если бы не существовало взаимодействия электрического тока с силами магнитной индукции.

Ампер открыл перед человечеством такие возможности, без которых развитие научно-технического прогресса было бы невозможным. Влияние этого закона в электротехнике сравнимо с законами Ньютона, которые в своё время совершили революцию в механике. В этом огромная заслуга учёного-физика Мари Ампера, труды которого увенчались открытием в 1820 г. знаменитого закона.

Источник: https://www.asutpp.ru/zakon-ampera.html

Сила Лоренца

Что такое сила Ампера? Формула силы ампера.
Подробности Категория: Электричество и магнетизм 11.06.2015 18:53 9573

Сила, действующая на точечную заряженную частицу со стороны электромагнитного поля, называется силой Лоренца.

Теория Лоренца

Хендрик Антон Лоренц

В 1892 г. голландский физик-теоретик Хендрик Антон Ло́ренц опубликовал работу «Электромагнитная теория Максвелла и её применение к движущимся телам», в которой объединил теорию поля и созданную им теорию электронного строения вещества.

Лоренц предположил, что все молекулы вещества состоят из частиц, имеющих электрический заряд. Величина этих зарядов одинакова. Но одни из них заряжены отрицательно, другие положительно.

Все эти элементарные заряды создают микроскопические электромагнитные поля, которые описываются уравнениями Максвелла.

Конечно, теория Лоренца имела недостатки и отличалась от современной электронной теории. Но в этой работе учёный вывел формулу силы, действующей на электрический заряд со стороны электромагнитного поля. Эту силу впоследствии назвали силой Лоренца.

Но что же такое электрический ток? Это направленное движение электрических зарядов. И если на каждую заряженную частицу действует сила Лоренца, то на отрезок проводника с током в электромагнитном поле должна действовать сила, величина которой равна сумме всех сил Лоренца, действующих на заряды, образующие электрический ток в проводнике.

И такая сила была открыта задолго до Лоренца. Ещё не зная о существовании силы, действующей на отдельный электрический заряд, французский физик Мари Андре Ампер в 1820 г. описал силу, действующую со стороны электромагнитного поля на проводник с током. Её назвали силой Ампера.

Связь между силой Ампера и силой Лоренца

Действуя на проводник с током, магнитное поле воздействует на каждую заряженную частицу, создающую этот ток. А сила Ампера действует на весь проводник. Таким образом, сила Ампера равна сумме всех сил Лоренца, действующих на проводник с током.

FA= F·N

где F– сила Лоренца;

 N– число частиц.

Отсюда F= FA /N

I = nqvS

N = nSl

Подставив эти выражения в формулу, получим выражение для силы Лоренца в магнитном поле:

F = qvBˑsinα.

Это выражение позволяет вычислить силу Лоренца в магнитном поле. Но магнитное поле не существует отдельно. Изменяясь, вместе с электрическим полем они порождают друг друга, образуя электромагнитное поле.

А оно в каждой точке своего пространства характеризуется напряжённостью электрического поля Еи индукцией магнитного поля В. И если электрически заряженная частица движется в электромагнитном поле, то на неё одновременно действуют и электрическое, и магнитное поле.

Значит, величина силы Лоренца, действующая со стороны электромагнитного поля на частицу с зарядом q, движущуюся со скоростью v, зависит от этих величин:

F = q(E + vxB)

F, E, vиB) – векторные величины. 

vxB– векторное произведение скорости движения частицы и индукции магнитного поля.

Направление силы Лоренца, как и силы Ампера, определяют с помощью правила левой руки: «Если расположить ладонь левой руки таким образом, чтобы линии магнитного поля входили в неё перпендикулярно, а 4 пальца направить в сторону движения частицы с положительным зарядом, или против движения частицы с отрицательным зарядом, то отогнутый на 900 большой палец покажет направление силы Лоренца».

Если заряженная частица движется параллельно силовым линиям магнитного поля, то величина силы Лоренца равна нулю, так как в этом случае α = 0, следовательно, sinα = 0

F = qvBˑsinα= 0.

Если же направление движения частицы перпендикулярно силовым линиям, то частица будет двигаться по окружности радиусом r, а сила Лоренца направлена к её центру, то есть является центростремительной силой.

Согласно второму закону Ньютона сила Лоренца равна mv2/r.

Отсюда

При движении частицы под углом к силовым линиям её траектория представляет собой винтовую (спиральную) линию, имеющую радиус r и шаг винта h.

Сила Лоренца не совершает работы, так как её направление всегда перпендикулярно направлению движения заряда.

Сила Лоренца в технике

Основное применение сила Лоренца нашла в электротехнике.

На явлениях электромагнитной индукции и силы Лоренца основана работа электродвигателей и генераторов. Возникая в электромагнитном поле статора, она приводит во вращение ротор.

Воздействие силы Лоренца на электроны используют в работе электронно-лучевых трубок (кинескопов), где магнитное поле, созданное специальными катушками, изменяет траекторию электронов. С помощью этой силы можно задавать орбиту движения частиц, что позволяет применять её в ускорителях заряженных частиц.

Источник: http://ency.info/materiya-i-dvigenie/elektrichestvo-i-magnetizm/460-sila-lorentsa

Закон Ампера — Студопедия

Что такое сила Ампера? Формула силы ампера.

Закон Ампера показывает, с какой силой действует магнитное поле на помещенный в него проводник. Эту силу также называют силой Ампера.

Формулировка закона: сила, действующая на проводник с током, помещенный в однородное магнитное поле, пропорциональна длине проводника, вектору магнитной индукции, силе тока и синусу угла между вектором магнитной индукции и проводником.

Если размер проводника произволен, а поле неоднородно, то формула выглядит следующим образом:

Направление силы Ампера определяется по правилу левой руки.

Правило левой руки: если расположить левую руку так, чтобы перпендикулярная составляющая вектора магнитной индукции входила в ладонь, а четыре пальца были вытянуты по направлению тока в проводнике, то отставленный на 90°большой палец, укажет направление силы Ампера.

МП движущего заряда. Действие МП на движущийся заряд. Сила Ампера, Лоренца.

Любой проводник с током создает в окружающем пространстве магнитное поле. При этом электрический же ток является упорядоченным движением электрических зарядов.

Значит можно считать, что любой движущийся в вакууме или среде заряд порождает вокруг себя магнитное поле.

В результате обобщения многочисленных опытных данных был установлен закон, который определяет поле В точечного заряда Q, движущегося с постоянной нерелятивистской скоростью v. Этот закон задается формулой

(1)

где r — радиус-вектор, который проведен от заряда Q к точке наблюдения М (рис. 1). Согласно (1), вектор В направлен перпендикулярно плоскости, в которой находятся векторы v и r: его направление совпадает с направлением поступательного движения правого винта при его вращении от v к r.

Рис.1

Модуль вектора магнитной индукции (1) находится по формуле

(2)

где α — угол между векторами v и r. Сопоставляя закон Био-Савара-Лапласа и (1), мы видим, что движущийся заряд по своим магнитным свойствам эквивалентен элементу тока: Idl = Qv

Действие МП на движущийся заряд.

Из опыта известно, что магнитное поле оказывает действие не только на проводники с током, но и на отдельные заряды, которые движутся в магнитном поле. Сила, которая действует на электрический заряд Q, движущийся в магнитном поле со скоростью v, называется силой Лоренца и задается выражением: F = Q где В — индукция магнитного поля, в котором заряд движется.

Чтобы определить направление силы Лоренца используем правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца направить вдоль вектора v (для Q>0 направления I и v совпадают, для Q На рис. 1 продемонстрирована взаимная ориентация векторов v, В (поле имеет направление на нас, на рисунке показано точками) и F для положительного заряда. Если заряд отрицательный, то сила действует в противоположном направлении.

Модуль силы Лоренца, как уже известно, равен F = QvB sin a; где α — угол между v и В.

МП не оказывает действия на покоящийся электрический заряд. Этим магнитное поле существенно отличается от электрического. Магнитное поле действует только на движущиеся в нем заряды.

Зная действие силы Лоренца на заряд можно найти модуль и направление вектора В, и формула для силы Лоренца может быть применена для нахождения вектора магнитной индукции В.

Поскольку сила Лоренца всегда перпендикулярна скорости движения заряженной частицы, то данная сила может менять только направление этой скорости, не изменяя при этом ее модуля. Значит, сила Лоренца работы не совершает.

В случае, если на движущийся электрический заряд вместе с магнитным полем с индукцией В действует еще и электрическое поле с напряженностью Е, то суммарная результирующая сила F, которая приложена приложенная к заряду, равна векторной сумме сил — силы, действующей со стороны электрического поля, и силы Лоренца: F = QE + Q[v,B]

Сила Ампера, Лоренца.

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера.

Сила действия однородного маг­нитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником:

F = B.I.l. sin α — закон Ампера.

Сила, действующая на заряженную движущуюся частицу в магнитном поле, называется силой Лоренца:

Явление электромагнитной индукции. Закон Фарадея. ЭДС индукции в движущихся проводниках. Самоиндукция.

Фарадей предположил, что если вокруг проводника с током существует магнитное поле, то естественно ожидать, что должно происходить и обратное явление – возникновение электрического тока под действием магнитного поля. И вот в 1831 г. Фарадей публикует статью, где сообщает об открытии нового явления – явления электромагнитной индукции.

Опыты Фарадея были чрезвычайно просты. Он присоединял гальванометр G к концам катушки L и приближал к ней магнит. Стрелка гальванометра отклонялась, фиксируя появление тока в цепи.

Ток протекал, пока магнит двигался. При отдалении магнита от катушки гальванометр отмечал появление тока противоположного направления.

Аналогичный результат отмечался, если магнит заменяли катушкой с током или замкнутым контуром с током.

Движущиеся магнит или проводник с током создают через катушку L переменное магнитное поле. В случае их неподвижности создаваемое ими поле постоянно.

Если вблизи замкнутого контура поместить проводник с переменным током, то в замкнутом контуре также возникнет ток.

На основе анализа опытных данных Фарадей установил, что ток в проводящих контурах появляется при изменении магнитного потока через площадь, ограниченную этим контуром.

Этот ток был назван индукционным. Открытие Фарадея было названо явлением электромагнитной индукции и легло в дальнейшем в основу работы электрических двигателей, генераторов, трансформаторов и подобных им приборов.

Итак, если магнитный поток через поверхность, ограниченную некоторым контуром, изменяется, то в контуре возникает электрический ток. Известно, что электрический ток в проводнике может возникнуть только под действием сторонних сил, т.е. при наличии э.д.с.. В случае индукционного тока э.д.с., соответствующая сторонним силам, называется электродвижущей силой электромагнитной индукции εi.

Э.д.с. электромагнитной индукции в контуре пропорциональна скорости изменения магнитного потока Фm сквозь поверхность, ограниченную этим контуром:

где к – коэффициент пропорциональности. Данная э.д.с. не зависит от того, чем вызвано изменение магнитного потока – либо перемещением контура в постоянном магнитном поле, либо изменением самого поля.

Итак, направление индукционного тока определяется правилом Ленца: При всяком изменении магнитного потока сквозь поверхность, ограниченную замкнутым проводящим контуром, в последнем возникает индукционный ток такого направления, что его магнитное поле противодействует изменению магнитного потока.

Обобщением закона Фарадея и правила Ленца является закон Фарадея – Ленца: Электродвижущая сила электромагнитной индукции в замкнутом проводящем контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную контуром:

Это выражение представляет собой основной закон электромагнитной индукции.

При скорости изменения магнитного потока 1Вб/с в контуре индуцируется э.д.с. в 1 В.

Пусть контур, в котором индуцируется э.д.с., состоит не из одного, а из N витков, например, представляет собой соленоид. Соленоид – это цилиндрическая катушка с током, состоящая из большого числа витков. Так как витки в соленоиде соединяются последовательно, εi в данном случае будет равна сумме э.д.с., индуцируемых в каждом из витков по отдельности:

Величину Ψ = ΣΦm называют потокосцеплением или полным магнитным потоком. Если поток, пронизывающий каждый из витков, одинаков (т.е. Ψ = NΦm), то в этом случае

Немецкий физик Г. Гельмгольц доказал, что закон Фарадея-Ленца является следствием закона сохранения энергии. Пусть замкнутый проводящий контур находится в неоднородном магнитном поле. Если в контуре течет ток I, то под действием сил Ампера незакрепленный контур придет в движение. Элементарная работа dA, совершаемая при перемещении контура за время dt, будет составлять

dA = IdФm,

где dФm – изменение магнитного потока сквозь площадь контура за время dt. Работа тока за время dt по преодолению электрического сопротивления R цепи равна I2Rdt. Полная работа источника тока за это время равна εIdt. По закону сохранения энергии работа источника тока затрачивается на две названные работы, т.е.

εIdt = IdФm + I2Rdt.

Разделив обе части равенства на Idt, получим

Следовательно, при изменении магнитного потока, сцепленного с контуром, в последнем возникает электродвижущая сила индукции

Электромагнитные колебания. Колебательной контур.

Электромагнитные колебания — это колебания таких величин, индуктивность, как сопротивление, ЭДС, заряд, сила тока.

Колебательный контур — это электрическая цепь, которая состоит из последовательно соединенных конденсатора, катушки и резистора. Изменение электрического заряда на обкладке кон- денсатора с течением времени описывается дифференциальным уравнением:

Электромагнитные волны и их свойства.

В колебательном контуре происходит процесс перехода электрической энергии конденсатора в энергию магнитного поля катушки и наоборот. Если в определенные моменты времени компенсировать потери энергии в контуре на сопротивление за счет внешнего источника, то получим незатухающие электрические колебания, которые через антенну могут быть излучены в окружающее пространство.

Процесс распространения электромагнитных колебаний, периодических изменений напряженностей электрического и магнитных полей, в окружающем пространстве называется электромагнитной волной.

Электромагнитные волны охватывают большой спектр длин волн от 105 до 10 м и по частотам от 104 до 1024 Гц.

По названию электромагнитные волны разделяются на радиоволны, инфракрасное, видимое и ультрафиолетовое излучения, рентгеновские лучи и -излучение.

В зависимости от длины волны или частоты свойства электромагнитных волн меняются, что является убедительным доказательством диалектико-материалистического закона перехода количества в новое качество.

Электромагнитное поле материальное и обладает энергией, количеством движения, массой, перемещается в пространстве: в вакууме со скоростью С, а в среде со скоростью: V= , где = 8,85 ;

Объемная плотность энергии электромагнитного поля . Практическое исполь­зование электромагнитных явлений весьма широкое.

Это – системы и средства связи, радиовещания, телевидения, электронно-вычислительная техника, системы управления различного назна­чения, измерительные и медицинские приборы, бытовая электро- и радиоаппаратура и другие, т.е. то, без чего невозможно представить себе современное общество.

Как действует на здоровье людей мощное электромагнитное излучение, точных научных данных почти нет, есть только неподтвержденные гипотезы и, в общем-то, небезосновательные опасение, что все неестественное действует губительно. Доказано, что ультрафиолетовое, рентгеновское и -излучение большой интенсивности во многих случаях наносят реальный вред всему живому.

Геометрическая оптика. Законы ГО

Геометрическая (лучевая) оптика использует идеализированное представление о световом луче – бесконечно тонком пучке света, распространяющемся прямолинейно в однородной изотропной среде, а также представления о точечном источнике излучения, равномерно светящем во все стороны. λ – длина световой волны, – характерный размер

предмета, находящегося на пути волны. Геометрическая оптика является предельным случаем волновой оптики и ее принципы выполняются при соблюдении условия:

h/D n1 , то Sin i1 > Sin i2 . Пусть теперь у нас n2 < n1 , то есть свет из стекла, например, выходит в воздух, и мы постепенно увеличиваем угол i1.

Тогда можно понять, что при достижении некоторого значения этого угла (i1)пр окажется, что угол i2 окажется равным π /2 (луч 5). Тогда Sin i2 = 1 и n1 Sin (i1)пр = n2 . Итак Sin

(i1)пр = n2 / n1 .

Источник: https://studopedia.ru/9_103794_zakon-ampera.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.