+7(499)-938-42-58 Москва
+7(800)-333-37-98 Горячая линия

Что такое прямая пропорциональность. Практическое применение прямой и обратной пропорциональной зависимости

Содержание

Практическое применение прямой и обратной пропорциональной зависимости. Прямая и обратная пропорциональность

Что такое прямая пропорциональность. Практическое применение прямой и обратной пропорциональной зависимости

Сегодня мы рассмотрим, какие величины называются обратно пропорциональными, как выглядит график обратной пропорциональности и как все это может вам пригодится не только на уроках математики, но и вне школьных стен.

Такие разные пропорциональности

Пропорциональностью называют две величины, которые взаимно зависимы друг от друга.

Зависимость может быть прямой и обратной. Следовательно, отношения между величинами описывают прямая и обратная пропорциональность.

Прямая пропорциональность – это такая зависимость двух величин, при которой увеличение либо уменьшение одной из них ведет к увеличению либо уменьшению другой. Т.е. их отношение не изменяется.

Например, чем больше усилий вы прилагаете для подготовки к экзаменам, тем выше ваши оценки. Или чем больше вещей вы берете с собой в поход, тем тяжелее нести ваш рюкзак. Т.е. количество затраченных на подготовку к экзаменам усилий прямо пропорционально полученным оценкам. И количество запакованных в рюкзак вещей прямо пропорционально его весу.

Обратная пропорциональность – это функциональная зависимость, при которой уменьшение либо увеличение в несколько раз независимой величины (ее называют аргументом) вызывает пропорциональное (т.е. во столько же раз) увеличение либо уменьшение зависимой величины (ее называют функцией).

Проиллюстрируем простым примером. Вы хотите купить на рынке яблок. Яблоки на прилавке и количество денег в вашем кошельке находятся в обратной пропорциональности. Т.е. чем больше вы купите яблок, тем меньше денег у вас останется.

Функция и ее график

Функцию обратной пропорциональности можно описать как y = k/x. В котором x≠ 0 и k≠ 0.

Эта функция обладает следующими свойствами:

  1. Областью ее определения является множество всех действительных чисел, кроме x = 0. D(y): (-∞; 0) U (0; +∞).
  2. Областью значений являются все действительные числа, кроме y= 0. Е(у):(-∞; 0)U (0; +∞).
  3. Не имеет наибольших и наименьших значений.
  4. Является нечетной и ее график симметричен относительно начала координат.
  5. Непериодическая.
  6. Ее график не пересекает оси координат.
  7. Не имеет нулей.
  8. Если k> 0 (т.е. аргумент возрастает), функция пропорционально убывает на каждом из своих промежутков. Если k< 0 (т.е. аргумент убывает), функция пропорционально возрастает на каждом из своих промежутков.
  9. При возрастании аргумента (k> 0) отрицательные значения функции находятся в промежутке (-∞; 0), а положительные – (0; +∞). При убывании аргумента (k< 0) отрицательные значения расположены на промежутке (0; +∞), положительные – (-∞; 0).

График функции обратной пропорциональности называется гиперболой. Изображается следующим образом:

Задачи на обратную пропорциональность

Чтобы стало понятнее, давайте разберем несколько задач. Они не слишком сложные, а их решение поможет вам наглядно представить, что такое обратная пропорциональность и как эти знания могут пригодиться в вашей обычной жизни.

Задача №1. Автомобиль движется со скоростью 60 км/ч. Чтобы доехать до места назначения, ему потребовалось 6 часов. Сколько времени ему потребуется, чтобы преодолеть такое же расстояние, если он будет двигаться со скоростью в 2 раза выше?

Можем начать с того, что запишем формулу, которая описывает отношения времени, расстояния и скорости: t = S/V. Согласитесь, она очень напоминает нам функцию обратной пропорциональности. И свидетельствует о том, что время, которое автомобиль проводит в пути, и скорость, с которой он движется, находятся в обратной пропорциональности.

Чтобы убедиться в этом, давайте найдем V 2 , которая по условию выше в 2 раза: V 2 = 60 * 2 = 120 км/ч. Затем рассчитаем расстояние по формуле S = V * t = 60 * 6 = 360 км. Теперь совсем несложно узнать время t 2 , которое требуется от нас по условию задачи: t 2 = 360/120 = 3 ч.

Как видите время в пути и скорость движения действительно обратно пропорциональны: со скоростью в 2 раза выше изначальной автомобиль потратит в 2 раза меньше времени на дорогу.

Решение этой задачи можно записать и в виде пропорции. Для чего сначала составим такую схему:

↓ 60 км/ч – 6 ч

↓120 км/ч – х ч

Стрелки обозначают обратно пропорциональную зависимость. А также подсказывают, что при составлении пропорции правую часть записи надо перевернуть: 60/120 = х/6. Откуда получаем х = 60 * 6/120 = 3 ч.

Задача №2. В мастерской трудятся 6 рабочих, которые с заданным объемом работы справляются за 4 часа. Если количество рабочих сократить в 2 раза, сколько времени потребуется оставшимся, чтобы выполнить тот же объем работы?

Запишем условия задачи в виде наглядной схемы:

↓ 6 рабочих – 4 ч

↓ 3 рабочих – х ч

Запишем это в виде пропорции: 6/3 = х/4. И получим х = 6 * 4/3 = 8 ч. Если рабочих станет в 2 раза меньше, оставшиеся затратят на выполнение всей работы в 2 раза больше времени.

Задача №3. В бассейн ведут две трубы. Через одну трубу вода поступает со скоростью 2 л/с и наполняет бассейн за 45 минут. Через другую трубу бассейн наполнится за 75 минут. С какой скоростью вода поступает в бассейн через эту трубу?

Для начала приведем все данные нам по условию задачи величины к одинаковым единицам измерения. Для этого выразим скорость наполнения бассейна в литрах в минуту: 2 л/с = 2 * 60 = 120 л/мин.

Поскольку из условия следует, что через вторую трубу бассейн заполняется медленнее, значит, и скорость поступления воды ниже. На лицо обратная пропорциональность. Неизвестную нам скорость выразим через х и составим такую схему:

↓ 120 л/мин – 45 мин

↓ х л/мин – 75 мин

А затем составим пропорцию: 120/х = 75/45, откуда х = 120 * 45/75 = 72 л/мин.

В задаче скорость наполнения бассейна выражена в литрах в секунду, приведем полученный нами ответ к такому же виду: 72/60 = 1,2 л/с.

Задача №4. В небольшой частной типографии печатают визитки. Сотрудник типографии работает со скоростью 42 визитки в час и трудится полный рабочий день – 8 часов. Если бы он работал быстрее и печатал 48 визиток за час, насколько раньше он смог бы уйти домой?

Идем проверенным путем и составляем по условию задачи схему, обозначив искомую величину как х:

↓ 42 визитки/ч – 8 ч

↓ 48 визитки/ч – х ч

Перед нами обратно пропорциональная зависимость: во сколько раз больше визиток в час напечатает сотрудник типографии, во столько же раз меньше времени ему потребуется на выполнение одной и той же работы. Зная это, составим пропорцию:

42/48 = х/8, х = 42 * 8/48 = 7ч.

Таким образом, справившись с работой за 7 часов, сотрудник типографии смогу бы уйти домой на час раньше.

Заключение

Нам кажется, что эти задачи на обратную пропорциональность действительно несложные. Надеемся, что теперь вы тоже считаете их такими. А главное, что знание об обратно пропорциональной зависимости величин действительно может оказаться для вас полезным еще не раз.

Не только на уроках математики и экзаменах. Но и тогда, когда вы соберетесь отправиться в путешествие, пойдете за покупками, решите немного подработать в каникулы и т.п.

Источник: https://tmzs.ru/prakticheskoe-primenenie-pryamoi-i-obratnoi-proporcionalnoi/

Пропорции свойства прямая и обратная пропорциональность. Практическое применение прямой и обратной пропорциональной зависимости

Что такое прямая пропорциональность. Практическое применение прямой и обратной пропорциональной зависимости

Сегодня мы рассмотрим, какие величины называются обратно пропорциональными, как выглядит график обратной пропорциональности и как все это может вам пригодится не только на уроках математики, но и вне школьных стен.

Прямая и обратная пропорциональности

Что такое прямая пропорциональность. Практическое применение прямой и обратной пропорциональной зависимости

Рассмотрим зарядку батареи. В качестве первой величины возьмем время, которое она заряжается. Вторая величина – время, которое она будет работать после зарядки. Чем дольше будет заряжаться батарея, тем дольше она будет работать. Процесс будет длиться до тех пор, пока батарея не полностью зарядится.

Зависимость времени работы батареи от времени, которое она заряжается

Замечание 1

Такая зависимость называется прямой:

С увеличением одной величины увеличивается и вторая. С уменьшением одной величины уменьшается и вторая величина.

Рассмотрим другой пример.

Чем больше книг прочитает ученик, тем меньше ошибок сделает в диктанте. Или чем выше подняться в горы, тем ниже будет атмосферное давление.

Замечание 2

Такая зависимость называется обратной:

С увеличением одной величины уменьшается вторая. С уменьшением одной величины увеличивается вторая величина.

Таким образом, в случае прямой зависимости обе величины изменяются одинаково (обе либо увеличиваются, либо уменьшаются), а в случае обратной зависимости – противоположно (одна увеличивается, а другая уменьшается либо наоборот).

  • Курсовая работа 460 руб.
  • Реферат 250 руб.
  • Контрольная работа 240 руб.

Определение зависимостей между величинами

Пример 1

Время, затраченное для похода в гости к другу, составляет $20$ минут. При увеличении скорости (первой величины) в $2$ раза найдем, как изменится время (вторая величина), которое будет затрачено на путь к другу.

Очевидно, что время уменьшится в $2$ раза.

Замечание 3

Такую зависимость называют пропорциональной:

Во сколько раз изменится одна величина, во столько раз изменится и вторая.

Пример 2

За $2$ булки хлеба в магазине нужно заплатить 80 рублей. Если нужно купить $4$ булки хлеба (количество хлеба увеличивается в $2$ раза), во сколько раз придется больше заплатить?

Очевидно, что стоимость также увеличится в $2$ раза. Имеем пример пропорциональной зависимости.

В обоих примерах были рассмотрены пропорциональные зависимости. Но в примере с булками хлеба величины изменяются в одну сторону, следовательно, зависимость является прямой.

А в примере с походом к другу зависимость между скоростью и временем – обратная.

Таким образом, существует прямо пропорциональная зависимость и обратно пропорциональная зависимость.

Прямая пропорциональность

Рассмотрим $2$ пропорциональные величины: количество булок хлеба и их стоимость. Пусть $2$ булки хлеба стоят $80$ рублей. При увеличении количества булок в $4$ раза ($8$ булок) их общая стоимость будет составлять $320$ рублей.

Отношение количества булок: $\frac{8}{2}=4$.

Отношение стоимости булок: $\frac{320}{80}=4$.

Как видно, эти отношения равны между собой:

$\frac{8}{2}=\frac{320}{80}$.

Определение 1

Равенство двух отношений называется пропорцией.

При прямо пропорциональной зависимости получается отношение, когда изменение первой и второй величины совпадает:

$\frac{A_2}{A_1}=\frac{B_2}{B_1}$.

Определение 2

Две величины называются прямо пропорциональными, если при изменении (увеличении или уменьшении) одной из них во столько же раз изменяется (увеличивается или уменьшается соответственно) и другая величина.

Пример 3

Автомобиль проехал $180$ км за $2$ часа. Найти время, за которое он с той же скоростью проедет в $2$ раза большее расстояние.

Решение.

Время прямо пропорционально расстоянию:

$t=\frac{S}{v}$.

Во сколько раз увеличится расстояние, при постоянной скорости, во столько же раз увеличится время:

$\frac{2S}{v}=2t$;

$\frac{3S}{v}=3t$.

Запишем условие задачи в виде таблицы:

Автомобиль проехал $180$ км – за время $2$ часа

Автомобиль проедет $180 \cdot 2=360$ км – за время $x$ часов

Чем больше расстояние проедет автомобиль, тем большее время ему понадобится. Следовательно, зависимость между величинами прямо пропорциональная.

Составим пропорцию:

$\frac{180}{360}=\frac{2}{x}$;

$x=\frac{360 \cdot 2}{180}$;

$x=4$.

Ответ: автомобилю потребуется $4$ часа.

Обратная пропорциональность

Определение 3

При обратно пропорциональной зависимости получается отношение, первая часть которого показывает, во сколько раз увеличилась первая величина, а вторая часть – во сколько раз уменьшилась вторая:

$\frac{N_2}{N_1}=\frac{S_1}{S_2}$.

Определение 4

Две величины называются обратно пропорциональными, если при изменении (увеличении или уменьшении) одной из них во столько же раз изменится (уменьшится или увеличится соответственно) другая величина.

Пример 4

Автомобиль, который двигается со скоростью $60$ км/ч, проехал путь за $6$ часов. Найти время, за которое автомобиль проедет этот же путь, но со скоростью в $2$ раза больше прежней.

Решение.

Время обратно пропорционально скорости:

$t=\frac{S}{v}$.

Во сколько раз увеличивается скорость, при том же пути, во столько же раз уменьшается время:

$\frac{S}{2v}=\frac{t}{2}$;

$\frac{S}{3v}=\frac{t}{3}$.

Запишем условие задачи в виде таблицы:

Автомобиль проехал $60$ км – за время $6$ часов

Автомобиль проедет $120$ км – за время $x$ часов

Чем больше скорость автомобиля, тем меньше времени ему понадобится. Следовательно, зависимость между величинами обратно пропорциональная.

Составим пропорцию.

Т.к. пропорциональность обратная, второе отношение в пропорции переворачиваем:

$\frac{60}{120}=\frac{x}{6}$;

$x=\frac{60 \cdot 6}{120}$;

$x=3$.

Ответ: автомобилю потребуется $3$ часа.

Источник: https://spravochnick.ru/matematika/obyknovennye_drobi_delimost_chisel_deliteli_i_kratnye/pryamaya_i_obratnaya_proporcionalnosti/

Что такое прямая пропорциональность. Практическое применение прямой и обратной пропорциональной зависимости

Что такое прямая пропорциональность. Практическое применение прямой и обратной пропорциональной зависимости

» Военные » Что такое прямая пропорциональность. Практическое применение прямой и обратной пропорциональной зависимости

Сегодня мы рассмотрим, какие величины называются обратно пропорциональными, как выглядит график обратной пропорциональности и как все это может вам пригодится не только на уроках математики, но и вне школьных стен.

Прямая и обратная пропорциональность – формулы, свойства и графики функций

Что такое прямая пропорциональность. Практическое применение прямой и обратной пропорциональной зависимости

Одно из основных понятий курса математики в 6 классе – это прямая и обратная пропорциональность. Если некоторая величина (время, масса, цена) изменяется, и одновременно другая величина (расстояние, объем, затраты) тоже меняется, то величины находятся в зависимости между собой, то есть пропорциональны друг другу.

Взаимосвязь между величинами не всегда означает наличие пропорциональности. Так, высота дерева растет с его возрастом, но не во столько же раз. Составление пропорций помогает решить многие задачи как в математике, так и на практике.

Прямая пропорциональность

Если при изменении одного параметра другой изменяется таким же образом, то эти величины прямо пропорциональны друг другу. В этой пропорции увеличение расстояния вдвое означает увеличение времени также двукратно.

Например, при движении автомобиля с постоянной скоростью, время, затраченное на преодоление расстояния, будет прямо пропорционально этому расстоянию. То есть, если 50 км автомобиль проедет за 1 час, то 100 км с той же скоростью он преодолеет за 2 часа.

Эта зависимость описывается следующей формулой:

y = k * x.

Здесь k и называется коэффициентом пропорциональности.

Графически функция изображается прямой, которая пройдет через начальную точку координат. Строят график следующим образом: находят одну точку, затем чертят прямую через эту точку и начало координат.

Пример построения

Нужно построить график у = 3х. Подставляем вместо х единицу, вычисляем y = 3, то есть находим координаты (1; 3). Отмечаем эту точку на координатной плоскости, проводим прямую линию через нее и точку (0; 0).

Вот так будет выглядеть график y = k * x при k > 0 (слева) и при k < 0 (справа).

Свойства функции прямой пропорциональности

Основные свойства следующие:

  • область определения, значений составляют все действительные числа;
  • является нечетной;
  • возрастает при всех значениях x, если k > 0;
  • если коэффициент со знаком «-», т. е. если k < 0, то убывает;
  • если k > 0, то прямая располагается в 1 – 3 координатных четвертях и образует острый угол с осью Х, если k < 0, то прямая находится во 2 - 4 четвертях и образует тупой угол с осью Х.

Обратная пропорциональность

Рост одного параметра ведет к уменьшению другого в такое же количество раз, и наоборот, при уменьшении одной величины другая увеличивается во столько же. Это значит, что они обратно пропорциональны друг другу.

Пример: трое рабочих выполнят порученную им работу за 2 часа, а 6 человек такое же задание осилят за 1 час. То есть двукратное увеличение числа работников привело к уменьшению затраченного времени вдвое. Конечно, если прочие факторы неизменны (производительность труда, условия работы).

Функция задается формулой:

где k – любое действительное число, кроме 0.

График данной зависимости — это гипербола, ее ветви находятся в 1 и 3 четвертях системы координат при k > 0, или во 2 и 4, если коэффициент меньше 0. Ветви гиперболы симметричны относительно точки (0; 0).

Строят график так: нужно задать значения х, затем вычислить значения у, результаты оформить в виде таблицы. Верхняя строка таблицы заполняется значениями х, нижняя — y.

Свойства функции обратной пропорциональности

Основные следующие:

  • области определения, значений функции D(y) – это все действительные числа, кроме 0, т. е. D(y):= x ≠ 0;
  • если коэффициент больше 0, функция является убывающей для всех x; если меньше 0, то y увеличивается для любых значений x;
  • оси координат 0х и 0у – это асимптоты по отношению к ветвям гиперболы, которые приближаются к ним, но не достигают их.

К составлению математических пропорций во многих случаях сводится решение самых разнообразных задач. Например, покупая 1 булочку по определенной цене, подсчитывают затраты на 4 булочки – получается в 4 раза больше. 

Ускоряют шаг при ходьбе в 2 раза – достигнут цели вдвое быстрее. Вводят второго кассира в магазине – убывает очередь вдвое. Во всех этих случаях и им подобным применима теория о прямой и обратной пропорциональности.

Источник: https://nauka.club/matematika/pryamaya-i-obratnaya-proportsionalnost.html

Прямая и обратная пропорциональность

Что такое прямая пропорциональность. Практическое применение прямой и обратной пропорциональной зависимости

Пропорциональность – это зависимость одной величины от другой, при которой изменение одной величины приводит к изменению другой во столько же раз.

Пропорциональность величин может быть прямой и обратной.

Формула прямой пропорциональности

Формула прямой пропорциональности:

y = kx

где y и x – это переменные величины, а k – это постоянная величина, называемая коэффициентом прямой пропорциональности.

Коэффициент прямой пропорциональности – это отношение любых соответствующих значений пропорциональных переменных y и x равное одному и тому же числу.

Формула коэффициента прямой пропорциональности:

Обратная пропорциональность

Рассмотрим следующий пример. Расстояние между двумя городами 80 км. Мотоциклист выехал из первого города, и со скоростью 20 км/ч доехал до второго города за 4 часа.

Если скорость мотоциклиста составила 20 км/ч это значит, что каждый час он проезжал расстояние равное двадцати километрам. Изобразим на рисунке расстояние, пройденное мотоциклистом, и время его движения:

На обратном пути скорость мотоциклиста была 40 км/ч, и на тот же путь он затратил 2 часа.

Легко заметить, что при изменении скорости, время движения изменилось во столько же раз. Причем изменилось в обратную сторону — то есть скорость увеличилась, а время наоборот уменьшилось.

Такие величины, как скорость и время называют обратно пропорциональными. А взаимосвязь между такими величинами называют обратной пропорциональностью.

Обратной пропорциональностью называют взаимосвязь между двумя величинами, при которой увеличение одной из них влечет за собой уменьшение другой во столько же раз.

и наоборот, если одна величина уменьшается в определенное число раз, то другая увеличивается во столько же раз.

К примеру, если на обратном пути скорость мотоциклиста составила бы 10 км/ч, то те же 80 км он преодолел бы за 8 часов:

Как видно из примера, уменьшение скорости привело к увеличению времени движения во столько же раз.

Особенность обратно пропорциональных величин заключается в том, что их произведение всегда постоянно. То есть при изменении значений обратно пропорциональных величин, их произведение остается неизменным.

В рассмотренном примере расстояние между городами было равно 80 км. При изменении скорости и времени движения мотоциклиста, это расстояние всегда оставалось неизменным

Мотоциклист мог проехать это расстояние со скоростью 20 км/ч за 4 часа, и со скоростью 40 км/ч за 2 часа, и со скоростью 10 км/ч за 8 часов. Во всех случаях произведение скорости и времени было равно 80 км

Понравился урок?
Вступай в нашу новую группу и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Источник: http://spacemath.xyz/pryamaya_proporcionalnost/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.